• 제목/요약/키워드: static and dynamic evaluation

Search Result 514, Processing Time 0.026 seconds

An Evaluation on Bending Behaviors of Conical Composite Tubes for Bicycle Frames (자전거 프레임용 원추형 복합재 튜브의 굽힘 거동 분석)

  • Hwang, Sang-Kyun;Lee, Jung-Woo;Hwang, Hui-Yun
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.358-362
    • /
    • 2016
  • Mechanical properties of static and dynamic behavior became important since the use of conical composite tubes in large structures such as aerospace, planes, and submarines as well as leisure goods such as bicycle frames, fishing rods, and golf shafts. In the past, the mechanical property prediction model for static behavior was studied using vibration, bending, and buckling. But there is a need to study how fiber orientation error affects mechanical properties of conical composite structure because the model assumes constant fiber orientation angle. The purpose of this study is to derive an equation that can predict the static behavior of conical composite tube for bicycle frames by considering fiber orientation error with respect to various design parameters.

Performance Analysis of SSSC with Switching-level Simulation Model and Scaled Hardware Model

  • Han, Byung-Moon;Kim, Hee-Joong;Baek, Seung-Taek
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 2001
  • This paper describes a switching-level simulation model and scaled hardware model for SSSC, which is useful for analyzing the dynamic interaction between the SSC and the power transmission system. A detailed simulation model with EMTP was developed to verity the SSSC operation with control system, and its increasing capability of power transmission through the line for a typical one-machine infinite-bus system. The simulation results of the developed model are compared with the experimental results froma scaled model fo 2KVA rating for evaluation the whole system operation.

  • PDF

The effects of vertebroplasty on adjacent vertebra (척추성형술이 인접 척추체에 미치는 영향)

  • Park, Jung-Soo;Choi, Chul-Hyun;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.746-750
    • /
    • 2007
  • Vertebroplasty has drawn much attention as a medical treatment for the compression fracture of spine, which strengthens the vertebral body and corrects deformity, and relieves pain in patients by injecting bone cement. However vertebroplasty can cause fracture on adjacent vertebra due to relative stiffness change. This study involves the biomechanical evaluation of the vertebroplasty especially on adjacent vertebral body. The finite element method has been employed to analyze the patient who was treated vertebroplasty under static and dynamic loading. For this study, a three-dimentioal model of the three-level ligamentous lumbar segment ($L1{\sim}L3$)is created from medical image data (CT)and compared with the experimental results in vitro.

  • PDF

Performance Evaluation of Gang Scheduling Policies with Migration in a Grid System

  • Ro, Cheul-Woo;Cao, Yang
    • International Journal of Contents
    • /
    • v.6 no.4
    • /
    • pp.30-34
    • /
    • 2010
  • Effective job scheduling scheme is a crucial part of complex heterogeneous distributed systems. Gang scheduling is a scheduling algorithm for grid systems that schedules related grid jobs to run simultaneously on servers in different local sites. In this paper, we address grid jobs (gangs) schedule modeling using Stochastic reward nets (SRNs), which is concerned for static and dynamic scheduling policies. SRN is an extension of Stochastic Petri Net (SPN) and provides compact modeling facilities for system analysis. Threshold queue is adopted to smooth the variations of performance measures. System throughput and response time are compared and analyzed by giving reward measures in SRNs.

Evaluation of seismic performance of road tunnels in operation (운영 중인 도로 터널의 내진 성능 평가)

  • Ahn, Jae-Kwang;Park, Du-Hee;Kim, Dong-Kyu;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.69-80
    • /
    • 2013
  • This study evaluates the seismic performance of road tunnels designed before the provisions for seismic design of tunnels were first established in 1999. Extensive design data and site investigation reports are investigated to select tunnels sections that are considered to be most susceptible to seismically induced damage under earthquake loading. Detailed analyses are performed on selected tunnels. The methods used are method of displacement and dynamic analysis. In performing the method of displacement, which is a type of pseudo-static analysis method used for underground structures, full domain and reduced domain modeling were used. The dynamic analyses are performed using finite difference method and using nonlinear constitutive model. Comparisons show that the reduced domain method of displacement match very closely with the dynamic analysis, demonstrating that it is the most suitable method for evaluating the seismic performance of road tunnels built in rocks. It is also shown that road tunnels, for which seismic design were not applied, are safe under the seismic risks corresponding to an earthquake with a return period 1000 years. It is concluded that additional seismic retrofit of tunnels is not necessary.

Evaluation of Dynamic Stability for Structural Bar Reinforced Precast and Prestressed Retaining Wall for Moving Train Load (이동열차하중에 대한 강봉으로 보강된 프리캐스트 프리스트레스트 옹벽의 동적 안정성 평가)

  • Lee, Il Wha;Um, Ju Hwan;Lee, Kang Myung;Keum, Chang Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.190-198
    • /
    • 2011
  • The precast production has many advantages by fast construction period, labor-saving and high quality. In recent years, the application of the precast product has been increased in the earth retaining wall field. This paper presents the results of the numerical analysis that was carried out to evaluate the dynamic stability of precast and prestressed earth retaining wall under moving train load. The two-dimensional FEM analysis was used to the numerical analyses. The train load to act on trackbed is combined by the real measured roughness phase angle and quasi-static load. The dynamic stability is analysed by the displacement, acceleration and stress under moving train load at each specified location. The results of the analysis show that the precast and prestressed retaining wall has very stable capability for the railway.

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.

A Study on the Evaluation of Mechanical Behavior of Golf Shafts (골프 샤프트의 역학적 거동 평가에 관한 연구)

  • 정성교;윤형택;정성균;임승규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.44-47
    • /
    • 2002
  • A liner static and dynamic analysis for a golf shaft, which is made of carbon fiber reinforced composite materials, is presented in this study. Major mechanical parameters of golf shafts such as deflection, torsional angel, frequency of vibration(CPM), and kick point are analyzed by finite element method. The effects of major parameters on the performance of golf shafts are also discussed. The results show that the major parameters of golf shafts are strongly dependent on the material properties of fibers and design pattern of golf shafts. The present results will be useful to design sheet-rolled golf shafts.

  • PDF

The Evaluation of the Hysteretic Behavior of the Viscoelastic Material in the Resonant Test (공진법시험에서 나타난 점탄성재료의 히스테레시스 영향평가)

  • Choi, Hyun;Kim, Doo-Hoon;Lee, Sang-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.596-601
    • /
    • 1998
  • Rubber has been widely used as a good device for reducing the vibration in various fields including the anti seismic device like LRB. The damping characteristic is needed to be mathematically modeled to predict the dynamic behavior of the isolated system. In this paper, The frequency response function was obtained experimentally by the resonant method and simulation was performed with the hysteretic model using the resonant test result. the hysteretic behavior of the rubber can be explained by the change of the static stiffness obtained in the DC by the concept of the transfer function.

  • PDF

Evaluation of the Preirradiation Baseline Material Characteristics for Yonggwang Nuclear Reactor Pressure Vessel (영광 원자력 발전소 원자로 소재의 가동전 재료 물성 특성)

  • Kim, K.C.;Kim, J.T.;Suk, J.I.;Kwon, H.K.;Sung, U.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.153-158
    • /
    • 2000
  • Nuclear reactor pressure vessel should be safety even in the case that hypothetical defects with allowable size are in vessel. Therefore, the materials should have excellent fracture resistance characteristics. The purpose of this study is to analyze the results of preirradiation baseline test of nuclear pressure vessel for Yonggwang Unit 5/6. In experiments, drop weight tests and impact tests are carried out to obtain nil-ductility transition reference temperature, $RT_{NDT}$ and static and dynamic fracture toughness tests are performed to compare with $K_{IR}$ curve in accordance with ASME Sec.III. The test results show that the materials had sufficiently fracture resistance characteristics for 40 years of design life.

  • PDF