• Title/Summary/Keyword: static and dynamic analyses

Search Result 406, Processing Time 0.024 seconds

Longitudinal Stability of a Wing-In-Ground Effect Craft (해면효과익선의 종방향 안정성에 대한 연구)

  • Ho-Hwan Chun;Chong-Hee Chang;Kwang-Jun Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.60-70
    • /
    • 1999
  • The longitudinal stability characteristics of a Wing-In-Ground Effect Craft are quite different from that of the conventional airplane due to the existence of force and moment derivatives with regard to height. This stability characteristics plays a great role in designing a safe and efficient WIG due to its potential danger in sea surface proximity. The static and dynamic stability criteria are derived from the motion equations of WIG in the framework of small disturbance theory and discussed in the paper. The static and dynamic stability analyses of a 20-passenger WIG are conducted based on the wind tunnel test data and the dynamic motion behaviors are investigated for the change of the design parameters. Finally, the flying quality of the 20-passenger WIG is analysed at the cruising condition according to the military regulations.

  • PDF

A Study on Dynamic Performance and Response of Turbo Shaft Engine for SUAV (스마트 무인항공기용 터보축 엔진의 동적성능과 응답성에 관한 연구)

  • Park J. C.;Lee D. W.;Roh T. S.;Choi D. W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-204
    • /
    • 2004
  • In this study, the GSP and in-house numerical codes have been used for analyses of the on-design, static off-design and dynamic off-design performances. Through the various missions including altitude, velocity, and power variations static engine performance have been investigated. The dynamic engine performances based on these complicated variations have been also analysed. Especially, the power, engine rpm and heat overload characteristics of a turbine have been estimated with the response time through the control of a throttle setting rather than a power setting. It could be applied to the FADEC system as an engine control device.

  • PDF

A Study on Dynamic Performance and Response of Turbo Shaft Engine for SUAV (스마트 무인항공기용 터보축 엔진의 동적성능과 응답성에 관한 연구)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.17-24
    • /
    • 2005
  • In this study, the GSP and in-house numerical codes have been used for analyses of the on-design, static off-design and dynamic off-design performances. Through the various missions including altitude, velocity, and power variations the static engine performance have been investigated. The dynamic engine performances based on these complicated variations have been also analyzed. Especially, the power, engine rpm and heat overload characteristics of the turbine have been estimated with the response time through the control of the throttle setting rather than the power setting. It could be applied to the FADEC system as an engine control device.

Vibration Analysis of Stiffened Thick Plate Subjected to Static Inplane Stress Using Finite Element Method (면내응력을 받는 보강 후판의 유한요소법에 의한 진동해석)

  • 오숙경;김일중;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.952-956
    • /
    • 2004
  • The soil-structure interactions are caused by the point sources of explosions, deriving piles, compaction of foundations and excavations those are frequently arose in the construction sites. Thus the analysis of soil-structure interactions is one of the most important subjects in the fields of dynamic analysis and vibration control. From this viewpoint, the aim of this study is to collect the basic data for designing foundation structures throughout understanding the dynamic structural behavior, which is embodied by the dynamic analysis of soil-structure systems. In this study, the dynamic analyses of stiffened thick plates subjected to in-plane stress on elastic foundations are carried out. The foundation is modeled as Pasternak foundation that includes the continuity effect of foundations. Also both the Mindlin plate theory and Timoshenko beam-column theory are used for analyzing the thick plates and beams, respectively.

  • PDF

A Case Study Of Dynamic Compacted Rock Embankment Design Considering Long Term Behavior (장기침하를 고려한 고성토 암버력 동다짐 지반의 설계사례)

  • Bae, Kyung-Tae;An, Sang-Yik;Park, Yong-Man;Kim, Kang-Kyu;Kim, Hyung-Suk;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.967-975
    • /
    • 2009
  • In order to control differential settlement and to secure the safety of super structure on a high rock embankment the designed static compaction is changed with dynamic compaction and piled raft method. The parameters for dynamic compaction design are obtained from a pilot test. In addition, numerical analyses are also carried out to figure out the length and quantity of piled raft that can restraint the differential settlement within allowance range.

  • PDF

Static Analysis of Axisymmetric Circular Plates under Lateral Loading Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 횡방향 하중을 받는 축대칭 원판의 정적해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.64-69
    • /
    • 2014
  • A circular plate is one of the important structures in many industrial fields. In static analysis of a circular plate, we may obtain an exact solution by analytical method, but it is limited to a simple circular plate. Thus, many researchers and designers have used numerical methods such as the finite element method. The authors of this paper developed the finite element-transfer stiffness coefficient method (FE-TSCM) for static and dynamic analyses of various structures. FE-TSCM is the combination of the modeling technique of the finite element method (FEM) and the transfer technique of the transfer stiffness coefficient method (TSCM). FE-TSCM has the advantages of both FEM and FE-TSCM. In this paper, the authors formulate the computational algorithm for the static analysis of axisymmetric circular plates under lateral loading using FE-TSCM. The computational results for three computational models obtained by FE-TSCM are compared with those obtained by FEM in order to confirm the accuracy of FE-TSCM.

Dynamic analysis of buildings considering the effect of masonry infills in the global structural stiffness

  • de Souza Bastos, Leonardo;Guerrero, Carolina Andrea Sanchez;Barile, Alan;da Silva, Jose Guilherme Santos
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.169-184
    • /
    • 2019
  • This research work presents a study that aims to assess the dynamic structural behaviour and also investigate the human comfort levels of a reinforced concrete building, when subjected to nondeterministic wind dynamic loadings, considering the effect of masonry infills on the global stiffness of the structural model. In general, the masonry fills most of the empty areas within the structural frames of the buildings. Although these masonry infills present structural stiffness, the common practice of engineers is to adopt them as static loads, disregarding the effect of the masonry infills on the global stiffness of the structural system. This way, in this study a numerical model based on sixteen-storey reinforced concrete building with 48 m high and dimensions of $14.20m{\times}15m$ was analysed. This way, static, modal and dynamic analyses were carried out in order to simulate the structural model based on two different strategies: no masonry infills and masonry infills simulated by shell finite elements. In this investigation, the wind action is considered as a nondeterministic process with unstable properties and also random characteristics. The fluctuating parcel of the wind is decomposed into a finite number of harmonic functions proportional to the structure resonant frequency with phase angles randomly determined. The nondeterministic dynamic analysis clearly demonstrates the relevance of a more realistic numerical modelling of the masonry infills, due to the modifications on the global structural stiffness of the building. The maximum displacements and peak accelerations values were reduced when the effect of the masonry infills (structural stiffness) were considered in the dynamic analysis. Finally, it can be concluded that the human comfort evaluation of the sixteen-storey reinforced concrete building can be altered in a favourable way to design.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

A Comparison study on the Performance of Several Types of Air Lubricated Hydrodynamic Thrust Bearings (여러 가지 형식의 동압 공기 윤활 스러스트 베어링의 성능에 대한 비교 연구)

  • 강지훈;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.197-203
    • /
    • 2001
  • In this paper, numerical analyses were undertaken to calculate the static and dynamic performances of step-pocket, inward pumping spiral grooved, outward pumping spiral grooved and herringbone grooved bearings. For each bearing, optimal values for various design parameters were obtained to maximize the load capacity and the stiffness and bearing performances were calculated. The optimized performances of these bearings were compared to conclude that the performance of step-pocket bearing is better than the other bearings.

  • PDF