• Title/Summary/Keyword: static and dynamic analyses

Search Result 406, Processing Time 0.031 seconds

Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell (원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화)

  • 이창훈;우호길;구경회;이재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

Nonlinear static and dynamic analyses of reinforced concrete buildings - comparison of different modelling approaches

  • Carvalho, Goncalo;Bento, Rita;Bhatt, Carlos
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.451-470
    • /
    • 2013
  • It generally accepted that most building structures shall exhibit a nonlinear response when subjected to medium-high intensity earthquakes. It is currently known, however, that this phenomenon is not properly modelled in the majority of cases, especially at the design stage, where only simple linear methods have effectively been used. Recently, as a result of the exponential progress of computational tools, nonlinear modelling and analysis have gradually been brought to a more promising level. A wide range of modelling alternatives developed over the years is hence at the designer's disposal for the seismic design and assessment of engineering structures. The objective of the study presented herein is to test some of these models in an existing structure, and observe their performance in nonlinear static and dynamic analyses. This evaluation is done by the use of two of a known range of advanced computer programs: SAP2000 and SeismoStruct. The different models will focus on the element flexural mechanism with both lumped and distributed plasticity element models. In order to appraise the reliability and feasibility of each alternative, the programs capabilities and the amount of labour and time required for modelling and performing the analyses are also discussed. The results obtained show the difficulties that may be met, not only in performing nonlinear analyses, but also on their dependency on both the chosen nonlinear structural models and the adopted computer programs. It is then suggested that these procedures should only be used by experienced designers, provided that they are aware of these difficulties and with a critical stance towards the result of the analyses.

Static and Dynamic Finite Element Analyses of a Bulk-Cement Trailer (벌크 시멘트 트레일러의 정동적 유한요소해석)

  • Kim, Jin-Gon;Lee, Jae-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.945-951
    • /
    • 2012
  • In this study, we analyze the static and dynamic characteristics of a bulk-cement trailer with a simpler structure that carries powders. The commercial software ANSYS is used to prepare a detailed three-dimensional model of the chassis frame and tank body that bear most of the load of a bulk-cement trailer for the finite element analysis. Modal analysis is conducted to examine the dynamic characteristics of the trailer body, and static analysis shows weak links in the structure. Finally, we propose a method to increase the strength of vulnerable areas and to reduce the weight of the trailer by applying the Taguchi method.

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Seismic response of RC frame structures strengthened by reinforced masonry infill panels

  • Massumi, Ali;Mahboubi, Behnam;Ameri, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1435-1452
    • /
    • 2015
  • The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. Experimental observations regarding the influence of infill panels on increasing stiffness and strength of reinforced concrete structures reveal that such panels can be used in order to strengthen reinforced concrete frames. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. In order to determine the acceptance criteria and modeling parameters for frames as well as reinforced masonry panels, the Iranian Guideline for Seismic Rehabilitation of Existing Masonry Buildings (Issue No. 376), the Iranian Guideline for Seismic Rehabilitation of Existing Structures (Issue No. 360) and FEMA Guidelines (FEMA 273 and 356) were used. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems.

Aspect ratios of code-designed steel plate shear walls for improved seismic performance

  • Verma, Abhishek;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.107-121
    • /
    • 2022
  • Past studies have shown that the aspect ratio (width-to-height) of a steel plate shear wall (SPSW) can significantly affect its seismic response. SPSWs with lower aspect ratio (narrow SPSW) may experience low lateral stiffness and flexure dominated drift response. As the height of the frame increases, the narrow SPSWs prove to be uneconomical and demonstrate inferior seismic response than their wider counterparts. Moreover, the thicker web plates required for narrow SPSWs exerts high inward pull on the VBEs. The present study suggests the limiting values of the aspect ratio for an SPSW system by evaluating the seismic collapse performance of 3-, 6- and 9-story SPSW systems using FEMA P695 methodology. For this purpose, nonlinear models are developed. These models are validated with the past quasi-static experimental results. Non-linear static analyses and Incremental dynamic analyses are then carried. The results are then utilized to conservatively suggest the limiting values of aspect ratios for SPSW system. In addition to the conventional-SPSW (Conv-SPSW), the collapse performance of staggered-SPSW (S-SPSW) is also explored. Its performance is compared with the Conv-SPSW and the use of S-SPSW is suggested in the cases where SPSW with lower than recommended aspect ratio is desired.

Inelastic Behavior of Steel Frames with Buckling Restrained Braced (비좌굴가새가 설치된 골조의 비탄성거동)

  • Kim Jin-Koo;Park Jun-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.97-104
    • /
    • 2005
  • The seismic behavior of framed structure with Chevron-type bucking restrained braces were investigated and their behavior factors were evaluated following the procedure proposed in ATC-19 & ATC-34. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2000, the AISC LRFD and the AISC/SEAOC Recommended Provisions for BRBF. Nonlinear static pushover analyses were carried out to observe the plastic hinge formation and to identify the loads and the displacements at the yield and the ultimate states. Time history analyses were also carried out to compute the permanent displacement md the dissipated hysteretic energy. According to the analysis results, the response modification factors of model structures fumed out to be larger than what is proposed in the provision in low story structures, and a little smaller in medium-story structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

  • PDF

Stability of onshore pipelines in liquefied soils: Overview of computational methods

  • Castiglia, Massimina;de Magistris, Filippo Santucci;Napolitano, Agostino
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.355-366
    • /
    • 2018
  • One of the significant problems in the design of onshore pipelines in seismic areas is their stability in case of liquefaction. Several model tests and numerical analyses allow investigating the behavior of pipelines when the phenomenon of liquefaction occurs. While experimental tests contribute significantly toward understanding the liquefaction mechanism, they are costly to perform compared to numerical analyses; on the other hand, numerical analyses are difficult to execute, because of the complexity of the soil behavior in case of liquefaction. This paper reports an overview of the existing computational methods to evaluate the stability of onshore pipelines in liquefied soils, with particular attention to the development of excess pore water pressures and the floatation of buried structures. The review includes the illustration of the mechanism of floating and the description of the available calculation methods that are classified in static and dynamic approaches. We also highlighted recent trends in numerical analyses. Moreover, for the static condition, referring to the American Petroleum Institute (API) Specification, we computed and compared the uplift safety factors in different cases that might have a relevant practical use.

A Study on Structural Behavior of Underground Openings in Discontinuous Rock Masses (불연속면의 영향을 고려한 암반동굴의 구조거동연구)

  • 김선훈;최규섭;이경진;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.20-25
    • /
    • 1991
  • In order to predict properly the effects of ground motion associated wi th earthquakes on underground radioactive waste disposal facilities, understanding of the structural behavior of an underground opening in discontinuous rook masses subjected to dynamic loadings is essential. Therefore, this paper includes literature review on computational models for discontinuous rook masses and on mathematical models for the structural analysis of underground openings. Then, structural analyses of underground openings using the distinct element computer program written for the static and dynamic analysis of discontinuous rook masses have been performed.

  • PDF

A Study on the Behavior of CFRP Cable (CFRP 케이블의 거동에 대한 연구)

  • Park, Jae-Gyun;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.457-462
    • /
    • 2007
  • The high tensile strength of steel cable enabled the development of long span cable bridges which that a better tensile element can break the limitation of current bridge design. A carbon fiber has at least strength as steel cable and is very light material relatively. Due to its characteristics. commercial carbon fiber cables are already used in place of steel prestress tendons. This study proposes a parallel carbon fiber(CF) cable for cable based on NPWS and CFCC cables. Static and nonlinear analyses reveal that the CF cable develops much less stress than the NPWS cable cyclic loads.

  • PDF