• Title/Summary/Keyword: static VAR compensator

Search Result 132, Processing Time 0.028 seconds

Reactive Power Compensator for Pulsed Power Electric Network of International Thermonuclear Experimental Reactor (국제 열핵융합실험로 펄스전원계통의 무효전력보상기 검증)

  • Jo, Hyunsik;Bae, Sanghoon;Oh, Jong-Seok;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.72-73
    • /
    • 2014
  • 본 논문에서는 ITER 펄스전원계통의 무효전력보상기(Reactive Power Compensator)의 해석 및 검증에 대하여 기술하였다. ITER 펄스전원계통은 66kV에 흐르는 무효전력량을 250MVar이하로 제한하기 위하여 정지형 무효전력보상기(Static Var Compensator)의 대표적인 장치인 싸이리스터 제어 리액터(TCR)와 고조파 필터(HF)로 구성된 무효전력보상기(RPC)를 사용한다. RPC에 적용되어 여러 ITER 초전도 코일 전원장치에서 발생하는 무효전력의 크기를 예측하여 보상하는 무효전력 보상기법을 해석한다. 본 논문에서는 RPC의 무효전력 보상동작을 실제 제어기와 RTDS를 연동하여 실험하여 검증하였고, RPC의 유무에 따라서 66kV 계통의 무효전력 최대값이 120MVar에서 40MVar로 감소하는 것을 확인하였다.

  • PDF

Static VAR Compensator Using 3 Phase PWM converter (3상 PWM 콘버어터에 의한 정지형 무효전력 보상장치의 동작특성)

  • Kim, Cheul-U;Kim, Kwang-Tae;Kwon, Soon-Jae;Hong, Soon-Il
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.137-139
    • /
    • 1988
  • A reactive power compensator whitch employs a three phase voltage source PWM converter is presented and analysed in this study. In this study, instantaneous reactive power compensator by the theory of instantaneous real and imaginary power are theoretically studied how to compensate reactive power occured by fundamental and harmonic reactive current. And we showed the compensation characteristics by comparing the experimental results with those of computer simulation.

  • PDF

Dynamic Interaction Research among Static Var Compensators (정지형 무효 전력 보상기 간의 상호 간섭 연구)

  • Kim, Hee-Jin;Hur, Kyeon;Chang, Byung-Hoon;Ha, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.455-456
    • /
    • 2011
  • 전력의 흐름을 제어하기 위하여 유연 송전 시스템(Flexible AC Transmission System, FACTS)이 전력 계통에 다수 설치되었고, 앞으로도 설치되는 FACTS 기기의 수가 늘어날 예정이다. 특히, 전력수요가 많은 수도권에는 안정도와 안전도를 확보하기 위해 FACTS 중 하나인 정지형 무효 전력 보상기(Static Var Compensator, SVC)의 설치가 필요하다. 하지만 SVC가 수도권에 다수 설치되면 SVC 기기 간에 상호 간섭 가능성이 있다. 따라서 본 논문에서는 SVC 기기 간의 상호간섭 가능성을 제시하고 Kundur 모델의 PSS/e 시뮬레이션을 통해 SVC 기기 간의 상호 간섭이 발생할 수 있음을 확인하고자 한다.

  • PDF

A study on the Reactive Power Compensation using Instantaneous Power for Self Commutated Static Var Compensator (순시전력을 이용한 자려식 SVC의 무효전력보상에 관한 연구)

  • Eum, Sang-O;Kim, Jong-Yun;Jeon, Nae-Suck;Park, Chan-Kun;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1206-1208
    • /
    • 2000
  • The Static var compensators(SVC) are intensively studied to realize high performance power equipment for electric power systems. Rapid and continuous reactive compensation by the SVC contributes to voltage stabilization, power oscillation damping, overvoltage suppression, minimization of transmission losses and so on. In this paper, instantaneous power vector theory which can expresses the instantaneous apparent power vector is proposed to control reactive power. The validity of the proposed method is confirmed by simulation studies.

  • PDF

A Study on the Application of the DVR in AC Electric Traction System (전기철도계통에 순간전압강하 보상장치 적용에 관한 연구)

  • 최준호;김태수;김재철;문승일;남해곤;정일엽;박성우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.95-104
    • /
    • 2003
  • The electric traction systems are quite differ from general power systems which is single-phase and heavy load. Therefore, there are inevitably power quality problems such as steady state or transient voltage drop, voltage imbalance and harmonic distortion. Among these problems, since steady-state volatge drop is the one of most important factor in electric power quality, many researches about on the compensation of volatge drop by using SVC(Static Var Compensator) and/or STACOM(Static Compensator) have been studied and proposed Also, it is expected that transient voltage drop(voltage sag) could affect the control and safety of high speed traction load. In this paper, voltage sag compensation of AT(Auto Transformer) feeding system are studied The detailed transient models of utility source, scott transformer, AT, and traction load are estabilished. The application of DVR(Dynamic Voltage Restorer) in electric traction system is proposed to compensate the voltage sag of traction network which is occured by the fault of utility source. It can be shown that application of the DVR in electric traction system is very useful to compensate the volatge sag from the result of related simulation works.

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

Modeling of Multilevel PWM Inverter/Rectifier (멀티레벨 PWM 인버터/정류기의 모델링)

  • Choi, Nam-Sup;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1119-1122
    • /
    • 1992
  • This paper deals with a novel method of modeling and analyzing multilevel pulse width modulation(PWM) inverter/rectifier, which leads to extraction of equivalent circuit in fundamental frequency domain. By the technique, we can draw out the corresponding linear time invariant circuit even thuogh the actual circuit is switched. A static VAR compensator using five-level inverter is modeled and simulated for the verification of the modeling.

  • PDF

Coordinated Control of ULTC and SVC Using a new control model of ULTC (새로운 ULTC 제어모델을 이용한 ULTC와 SVC의 협조제어)

  • Lee, Song-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.230-232
    • /
    • 2000
  • To improve the voltage profile of the load bus, it is important that the coordinated controls among the reactive power compensators at the distribution substation. However, the conventional control scheme of the Under Load Tap Changer (ULTC) is not proper for coordinate control with Static Var Compensator (SVC). This paper proposes a new control model for ULTC and a new coordinated control scheme between ULTC and SVC. The numerical simulation verifies that the proposed system could improve the voltage profile on the load bus and could decrease the number of ULTC tap operation.

  • PDF

A Study on The Reducing Harmonics of Static Var Compensator using PAM Inverter (PAM 인버터를 이용한 무효전력보상장치의 고조파 저감에 관한 연구)

  • Park, Hyun-Chul;Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1103-1106
    • /
    • 2002
  • This paper presents SVC which use PAM method and eliminate harmonics. Inverter is connected directly so that SVC improve output voltage waveform into 24 steps. Inverter output waveform THD is reduced to 6.89%. Leading control of reactive power generated in power system is possible. Snubber is added to reduce switching loss.

  • PDF

Development of RTDS model for Sea-Deagu SVC (실시간 디지털 시뮬레이터를 위한 서대구 SVC 모델 개발)

  • Kim, Y.K.;Lee, J.;Yoon, Y.B.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.280-282
    • /
    • 2002
  • This paper presents the characteristics and Real Time Digital Simulator(RTDS) model for Seo-deagu Static Var Compensator(SVC) systems installed in 1999. SVC system is a power system controller using power electronics called Flexible AC Transmission Systems (FACTS). RTDS model for Seo-deagu SVC is developed and verified, we recognize to be essential for SVC systems and understand SVC systems through simulation.

  • PDF