• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.03 seconds

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

Control Method of Mobile Robots for Avoiding Slip and Turnover on Sloped Terrain Using a Gyro/Vision Sensor Module (Gyro/Vision Sensor Module을 이용한 주행 로봇의 미끄러짐 및 넘어짐 회피 제어 기법)

  • Lee Jeong-Hee;Park Jae-Byung;Lee Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.669-677
    • /
    • 2005
  • This acticle describes the control method of mobile robots for avoiding slip and turnover on sloped terrain. An inexpensive gyro/vision sensor module is suggested for obtaining the information of terrain at present and future. Using the terrain information and the robot state, the maximum limit velocity of the forward velocity of the robot is defined fur avoiding slip and turnover of the robot. Simultaneously the maximum value of the robot velocity is reflected to an operator in the form of reflective force on a forte feedback joystick. Consequently the operator can recognize the maximum velocity of the robot determined by the terrain information and the robot state. In this point of view, the inconsistency of the robot movement and the user's command caused by the limit velocity of the robot can be compensated by the reflective force. The experimenal results show the effectiveness of the suggested method.

Lyapunov Based Stability Analysis and Design of A Robust High-Gain Observer (강인한 고이득 관측기 설계 및 안정성 해석)

  • Yu, Sung-Hoon;Hyun, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.8-15
    • /
    • 2010
  • This paper proposes a robust high-gain observer design scheme for nonlinear systems and its stability is analyzed based on Lyapunov theory. It is assumed that their states are unmeasurable. The proposed high-gain observer has the integrator of the estimation error in dynamics. It improves the performance of high-gain observers and makes the proposed observer robust to noisy measurements, uncertainties and peaking phenomenon as well. Its stability is analyzed by the Lyapunov approach. In order to verify the effectiveness of the proposed scheme, it is applied to output feedback controllers and some comparative simulation result with the existed observer based output feedback controllers and state feedback controllers is given.

Long-term stabilization of optical feedback of a resonant external cavity coupled semiconductor laser (공진형 외부 캐비티 부착 반도체 레이저의 광피드백 장기 안정화)

  • 신철호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.96-99
    • /
    • 1998
  • In this study, a novel long term stabilization method of optical feedback for the resonant cavity coupled semiconductor lasers is proposed, and its utility was shown experimentally. The proposed method is realized by using the pahse discriminator of optical feedback with high gain. The phase discriminating signal was obtained by the polarization spectroscopic technique using reflection light from the external reflector, which is a confocal Fabry-Perot cavity. Experimental result shows that stable control state can be maintained up to 20 hours. The period can be increased by reducing size of the system and/or fixing position stably of optical parts used, which were arranged on an optical table by using magnetic bases in this experiment. The proposed long-term stabilization method of optical feedack of a resonant external cavity coupled semiconductor laser is very useful for the field of high sensitivity measurement, and for the use in the laboratory level in particular.

  • PDF

The Congestion Control using Selective Slope Control under Multiple Time Scale of TCP (TCP의 다중 시간 간격에서 선택적 기울기 제어를 이용한 혼잡 제어)

  • Kim, Gwang-Jun;Kang, Ki-Woong;Lim, Se-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • In this paper, we extend the multiple time scale control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of multiple time scale TCP is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. If source traffic is not extended exceeding, when RTT is 450ms, in self similar burst environment, performance gain of TCP-SSC is up to 45% for ${\alpha}$=1.05. However, its is acquired only 20% performance gain for ${\alpha}$=1.95 relatively. Therefore we showed that by TCP-MTS at large time scale into a rate-based feedback congestion control, we are able to improve two times performance significantly.

  • PDF

Design of Sliding Mode Controller for Uncertain Multivariable Systems in the absence of Structure Matching Conditions (정합 조건이 만족되지 않는 불확실한 다변수 계통에 대한 슬라이딩 모드 제어기의 설계)

  • Park, Gwi-Tae;Kim, Dong-Sik;Lim, Sung-Jun;Seo, Ho-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.670-677
    • /
    • 1991
  • All models of dynamical systems invariably have some measure of uncertainties associated with some of their dynamics. The recent approaches to establish robustness of stabilizing feedback control against the possible uncertainties have a serious limitation, that is, their applicability only to the systems that satisfy the matching conditions. Such conditions are rarely met in general applications. If a particular system satisfies the matching conditions, the addition of an actuator will destroy the satisfaction of such conditions. In this paper, we develop robust control algorithm for uncertain multivariable systems in which the matching conditions are not necessarily met. In order to eliminate an influence over partial state variables due to unknown constant disturbances we perform the appropriate block-decomposition for a given system. Functional observers are introduced to estimate the unknown constant disturbances. The sliding mode controller is designed in such a way that the partial state variables in the state-space are directed towards switching surfaces and regulated to the origin asymptotically. Numerical examples are discussed as illustrations.

  • PDF

An Efficient FPGA based Real-Time Implementation Shunt Active Power Filter for Current Harmonic Elimination and Reactive Power Compensation

  • Charles, S.;Vivekanandan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1655-1666
    • /
    • 2015
  • This paper proposes a new approach of Field Programmable Gate Array (FPGA) controlled digital implementation of shunt active power filter (SAPF) under steady state and dynamic operations. Typical implementations of SAPF uses microprocessor and digital signal processor (DSP) but it limited for complex algorithm structure, absence of feedback loop delays and their cost can be exceed the benefit they bring. In this paper, the hardware resources of an FPGA are configured and implemented in order to overcome conventional microcontroller or digital signal processor implementations. This proposed FPGA digital implementation scheme has very less execution time and boosts the overall performance of the system. The FPGA controller integrates the entire control algorithm of an SAPF, including synchronous reference frame transformation, phase locked loop, low pass filter and inverter current controller etc. All these required algorithms are implemented with a single all-on chip FPGA module which provides freedom to reconfigure for any other applications. The entire algorithm is coded, processed and simulated using Xilinx 12.1 ISE suite to estimate the advantages of the proposed system. The coded algorithm is also defused on a single all-on-chip Xilinx Spartan 3A DSP-XC3SD1800 laboratory prototype and experimental results thus obtained match with simulated counterparts under the dynamic state and steady state operating conditions.

An Experimental Study on Control System Performance of an Electro-Hydraulic Copying Machine (전기 유압식 모방절삭 기계 의 제어성능 에 관한 연구)

  • 윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.104-110
    • /
    • 1984
  • An electro-hydraulic copying system is developed and its performance is experimentally investigated. As compared with a mechanical hydraulic coping system, this system has a basic difference in that; (1) the stylus movement is converted into an electrical signal via a position transducer. (2)the actuator displacement is also measured by a position sensing element, which serves as a feedback signal. Since the system parameters affect the control performance, the response characteristics such as percentage overshoot, rise time, settling time and steady state error are experimentally obtained under variation of these variables. The system parameter include supply pressure, servo amplifier gain and feedback gain. The experimental result shows that the cutting tool follows a stylus input motion to a desirable accuracy. The implication of this result indicates that the developed system can enhance the copying accuracy of the conventionally used mechanical type of hydraulic copying system.

Design of Irrigation Pumping System Controller for Operational Instrument of Articulation (관절경 수술을 위한 관주(灌注)시스 (Irrigation Pumping System) 제어기의 개발)

  • 김민수;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1294-1297
    • /
    • 2003
  • With the development of medical field, many kinds of operations have been performed on human articulation. Arthroscopic surgery, which has Irrigation Pumping System for security of operator vision and washing spaces of operation, has been used for more merits than others. In this paper, it is presented that the research on a reliable control algorithm of the pumping system instrument for arthroscopic surgery. Before clinical operation, the flexible artificial articulation model is used for realizing the model the most same as human's and the algorithm has been exploited for it. This system is considered of the following; limited sensing point, dynamic effect by compliance, time delay by fluid flow and so on. The system is composed with a pressure controller, a regulator for keeping air pressure, an airtight tank that can have distilled water packs, artificial articulation and a measuring system, and has controlled by the feedback of pressure sensor on the artificial articulation. Also the system has applied to Smith Predictor for time delay and the parameter estimation method for the most suitable system with both the experiment data and modeling. In this paper, the pressure error that is between an air pressure tank and an artificial articulation was measured so that the system could be presumed and then the controller had developed for performing State-Feedback. Finally, the controller with a real microprocessor has realized. The confidence of system can be proved by applying this control algorithm to an artificial articulation experiment material.

  • PDF

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.