• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.034 seconds

The small signal analysis of current-mode controlled converter (전류모드제어형 컨버터의 소신호 제어 특성)

  • Song, Yo-Chang;Kim, Young-Tae;Kim, Cherl-Jim
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.968-970
    • /
    • 2001
  • Recently, the power supply equipments have tendency to take multiple feedback loop paths. In this paper the state space averaging technique is applied for the analysis of flyback type current mode control circuit. We made real converter for the gurantee of stable output characteristic and proper design of feedback circuit. The validity of proposed method is verified from test results. The improvement of stability is confirmed by sinusoidal signal injection method with isolated transformer. It is known that phase margin is sufficient and gain crossover frequency $f_c$ is nearly 1/5 of switching frequency $f_s$, from the experimental result with frequency response analyzer.

  • PDF

Gain-scheduled controller design of an Active Suspension System with an Asymmetric Hydraulic Cylinder using Feedback linearization technique & optimal (비대칭형 유압 실린더를 사용한 능동현가 시스템에서의 궤한 선형화와 최적제어기법을 이용한 이득계획제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.452-454
    • /
    • 1998
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state. and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. For real time application, gain-scheduling method is used. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

Design of a CDBC Using Multirate Sampling (Multirate 샘플링을 이용한 CDBC의 설계)

  • 김진용;김성열;이금원;이준모
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes a design method of a CDBC(Continuous-time Deadbeat Controller)system that takes into account the response between the sampling instant and using second-order smoothing elements. The continuous deadbeat controller is composed of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. A DC servo motor is chosen for implementing CDBC algorithm. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. A Matlab Simulink is used for simulation with the Motor parameter. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

Design of a CDBC Using Second-order Smoothing Element (2차 평활요소를 이용한 CDBC의 설계)

  • 김진용;김성열;이금원
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents a new design method of optimal continuous deadbeat controller by using second-order smoothing elements. The continuous deadbeat controller is made of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. The decision method of the damping factor and the natural angular frequency of the smoothing element is described. A numerical example is given to show how well input-output characteristics are improved. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

A Study on the stability improvement of current-mode controlled DC-DC Converter (전류제어형 DC-DC컨버터의 안정도 향상에 관한 연구)

  • Kim, Cherl-Jin;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.365-367
    • /
    • 2000
  • Recently, the power supply equipments have tendency to take multiple feedback loop paths. In this paper, the state space averaging technique is applied for the analysis of flyback type current mode control circuit. We made real converter for the gurantee of stable output characteristic and proper design of feedback circuit. The validity of proposed method is verified from test results. The improvement of stability is confirmed by sinusoidal signal injection method with isolated transformer. It is known that phase margin is sufficient and gain crossover frequency $f_c$ is nearly 1/5 of switching frequency $f_s$ from the experimental result with frequency response analyzer.

  • PDF

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

Delay-dependent stabilization for time-delay systems;An LMI approach

  • Cho, H.J.;Park, Ju-H.;Lee, S.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1744-1746
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.

  • PDF

Design of Robust MIESF Controller (강인한 특성을 갖는 MIESF제어기의 설계)

  • Park, Gwi-Tae;Lee, Kee-Sang;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.396-401
    • /
    • 1990
  • The objective is to explore design concept for MIESF(Modified Integral error and State Feedback) controller. A method is outlined for designing MIESF controller that provides robust performance despite real parameter uncertainties in the process model. Insight into the design process is gained by viewing the MIESF from the perspective of IMC(Internal Model Control).

  • PDF

Robust stabilization of time-delay systems with nonlinear uncertainties

  • Park, Juhyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1197-1200
    • /
    • 1996
  • This paper is concerned with the design of robust state feedback controller for a class of linear time-delay systems with norm-bounded nonlinear uncertainties. Under the proposed delay-independent criterion, asymptotic stability for the system is investigated using the conventional Lyapunov method. Moreover, the robust controller can be obtained by solving the linear matrix inequality which is equivalent to the suggested conditions.

  • PDF

H$\infty$ controller design for input-saturated linear systems

  • Choi, Ki-Hoon;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.75.2-75
    • /
    • 2001
  • In this paper, we provide the technique of H$\infty$ controller design algorithm for input-saturated linear systems using a linear parameter varying(LPV) framework. The LPV controller with parameter dependent dynamic state feedback controller concept guarantees the asymtotic stability and H$\infty$ norm bound within prescribed level v using the saturation nonlinearity as scheduling parameters. Especially, the sufficient conditions for the existence of H$\infty$ controller are formulated in terms of linear matrix inequalities(LMIs) that can be solved very efficiently.

  • PDF