• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.029 seconds

BIFURCATIONS AND FEEDBACK CONTROL IN AN EXPLOITED PREY-PREDATOR SYSTEM WITH STAGE STRUCTURE FOR PREY

  • Kar, T.K.;Pahari, U.K.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1193-1204
    • /
    • 2011
  • In the present paper we consider a differential-algebraic prey-predator model with stage structure for prey and harvesting of predator species. Stability and instability of the equilibrium points are discussed and it is observed that the model exhibits a singular induced bifurcation when the economic profit is zero. It indicates that the zero economic profit brings impulse, i.e. rapid expansion of the population and the system collapses. For the purpose of stabilizing the system around the positive equilibrium, a state feedback controller is designed. Finally, numerical simulations are given to show the consistency with theoretical analysis.

Motion Control of Inchworm using Input Shaping and Genetic Algorithm (입력 성형과 유전 알고리즘에 의한 자벌레 운동제어)

  • Kim, In-Soo;Kim, Ki-Bum;Park, Seung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • This study presents a genetic algorithm (GA) to design a PID controller systematically for an inchworm operated by piezoelectric actuators. The performance index considering overshoot and settling time is adopted to search an optimal PID gain using GA. The piezoelectric actuator shows nonlinear characteristics including hysteresis and residual displacement. The PID feedback system combined with an integrator is used to improve the ability of tracking the complex input signals and suppressing the steady state error. The PID controller tuned by GA can track the various motion contours effectively. However, the PID controller shows an improper residual vibration under the application of high-frequency square input. The input shaper combined with the feedback system can overcome this limitation of the PID controller.

Design of Sliding Mode Controller for Nonlinear System (비선형 계통에 대한 슬라이딩 모드 제어기의 설계)

  • Kim Min-Chan;Lee Jae-Dong;Park Seung-Kyu;Kwak Gun-Pyong;Ahn Ho-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • In this paper, the feedback linearization technique is used with the sliding mode control for nonlinear systems. This combination of the two control techniques is achieved by introducing a novel sliding surface which has the nominal dynamics of the original system controlled by feedback linearization technique. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

Control of Chaotic Nonlinear Systems Using Radial Basis Function Networks (방사 기저 함수 회로망을 이용한 혼돈 비선형 시스템의 제어)

  • Kim, Keun-Bum;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.569-571
    • /
    • 1998
  • In this paper, a new method of conrolling chaotic nonlinear systems is proposed. Firstly, the dynamics of a chaotic nonlinear system is separated into a linear part and a nonlinear part. Secondly, the nonlinear part is approximated using a radial basis function network (RBFN) and canceled from the controlled system. Then, the resulting system has only the linear part added with very weak nonlinearity. Finally, a simple linear state feedback control law is designed for the linear part. In the meanwhile, a theorem justifying this concept is presented and proved. Comparing with the feedback linearization, the proposed method can be applied regardless of the functional form of the controlled dynamics. The proposed method is applied by simulation to the Duffing system and the Lorenz system and satisfactory results are obtained.

  • PDF

Application of decoupling control method to the multivariable generating system (다변수 발전설비 모델에 대한 비간섭 제어기법 적용 연구)

  • 홍석교;김동화
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-50
    • /
    • 1992
  • In this paper, application of decoupling control method of multivariable system by state feedback to turbo-generating system with 2-input and 2-output is studied. The results of simulation shows tat turbo-generating system is canonically decoupled, and can be controlled against the change of load or frequency by feedback gain.

  • PDF

Optimization and Thrust force Calculation of Linear Generator in Starting Mode for Free-Piston Engine Applications

  • Lee, Hyun-Woo;Eid Ahmad M.;Sugimura Hisayuki;Choi, Kwang-Ju;Nakaoka Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.395-398
    • /
    • 2006
  • this paper provides a novel method to start the linear engine coupled linear generator from dead stop to its final steady state operation. This method depends mainly to use the linear generator mounted on the shaft of the linear engine to provide the required thrust force to move and oscillate the linear engine from bottom to top dead centers. It is a cost effective approach to start the internal linear combustion engine using its coupled tubular permanent magnet linear generator proposed here. This linear generator operates in this case in motoring mode, providing the required thrust force by feeding this linear generator phases with currents by using a three phase PWM inverter controlled by position feedback scheme. In order to provide the desired thrust force with specific value and direction, a position feedback is required to control the free piston engine motion through controlling the inverter switches using PWM control scheme.

  • PDF

Control Systems Design Based on Disturbance Cancellation via LTR Technique

  • Inooka, Hikaru;Ichirou, Komatsu Ken
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.87.1-87
    • /
    • 2001
  • For a plant subject to several kinds of disturbances in the plant input side, we consider a problem of designing a controller based on the disturbance cancellation. The conventional loop transfer recovery (LTR) technique can not be used since the extended system consisting of the plant and the disturbance model is not necessarily stabilizable. We propose a new LTR technique that can be applied for our problem. As a target of the LTR, we choose a state feedback controller using a disturbance estimator. We find an LTR procedure based on the Riccati equation formalism where the stochastic model contains the filter gain matrix of the disturbance estimator in the target. The procedure recovers the target feedback ...

  • PDF

Balancing Control Algorithm for a Single-Wheeled Mobile Robot (외륜 이동로봇의 균형제어 알고리즘)

  • Lee, Hyun Tak;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

Systematic Current Control Strategy with Pole Assignment for Grid-Connected LCL-Filtered Inverters

  • Xu, Jinming;Xie, Shaojun;Tang, Ting
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.447-457
    • /
    • 2013
  • For grid-connected LCL-filtered inverters, resonance yields instability and low bandwidth. As a result, careful designs are required. This paper presents a systematic current control structure, where pole assignment consisting of one or more feedbacks is the inner loop, and the outer loop is the direct grid current control. Several other issues are discussed, such as the inner-loop feedback choices, pole-assignment algorithms, robustness and harmonic rejection. Generally, this kind of strategy has three different types according to the inner-loop feedback choices. Among them, a novel pole-assignment algorithm has been proposed, where the inner control maintains four freely-assigned poles which are just two pairs of conjugated poles located at the fundamental and resonance frequencies separately. It has been found that with the different types, the steady-state and dynamic performances are quite different. Finally, simulations and experiments have been provided to verify the control and design of the proposed methods.

The Congestion Control using Multiple Time Scale under Self-Similar Traffic of TCP (TCP의 자기 유사성 트래픽 조건하에서 다중 시간 간격을 이용한 혼잡 제어)

  • 김광준;윤찬호;김천석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.310-323
    • /
    • 2004
  • In this paper, we extend the multiple time scale control framework to window-based congestion control, in particular, TCP This is performed by interfacing TCP with a large tine scale control nodule which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT Our contribution is threefold. First, we define a modular extension of TCP-a function call with a simple interface-that applies to various flavors of TCP-e.g., Tahoe, Reno, Vegas and show that it significantly improves performance. Second, we show that multiple time scale TCP endows the underlying feedback control with preactivity by bridging the uncertainty gap associated with reactive controls which is exacerbated by the high delay-bandwidth product in broadband wide area networks. Third, we investigate the influence of three traffic control dimensions-tracking ability, connection duration, and fairness-on performance. Performance evaluation of multiple time scale TCP is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic.