• Title/Summary/Keyword: state variable

Search Result 1,630, Processing Time 0.03 seconds

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.

Static VAR Compensator-based Feedback Control Implementation for Self-Excited Induction Generator Terminal Voltage Regulation Driven by Variable-Speed Prime Mover

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, the steady-state analysis of the three-phase self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is presented. The steady-state torque-speed characteristics of the VSPM are considered with the three-phase SEIG equivalent circuit for evaluating the operating performances due to the inductive load variations. Furthermore, a PI closed-loop feedback voltage regulation scheme based on the static VAR compensator (SVC) for the three-phase SEIG driven by the VSPM is designed and considered for the wind power generation conditioner. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of fast response and high performances.

Design of an Output Feedback Variable Structure Control System (출력궤환 가변구조 제어계의 설계에 관한 연구)

  • 이기상;조동식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.883-892
    • /
    • 1992
  • In order to remove the assumption of full state availability which is one of the major difficulties with the practical realization of variable structure control system (VSCS), an output feedback variable structure control scheme for multivariable systems is proposed. The proposed output feedback VSCS is composed of a switching surfaces with dynamic structure and a new output feedback control input that can be constructed by using conventional output feedback control input design methodologies. With the proposed scheme, the practical realization of VSCS for the systems with unmeasurable states and for high order systems that conventional schemes cannot be applied is possible. Simulation results show that proposed scheme is a viable method to achieve the desired control performance, for example, good transient response, robustness against process parameter variations and external disturbance without measuring all the state variables.

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.

Fuzzy Linguistic Variable Based Approach for Safety Assessment of Human Body in ELF Electromagnetic Field Considering Power System States (계통상태를 고려한 ELF 전자계의 인체안전평가를 위한 퍼지언어변수 접근법)

  • 김상철;김두현;고은영
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.70-79
    • /
    • 1997
  • This paper presents a study on the fuzzy linguistic variable based approach for safety assessment of human body in ELF electromagnetic field considering power system states. To cope with the demand in modern industry, the power system becomes larger in scale, higher in voltage. The advent of high voltage system has increased the relative importance of field effects. The analysis of ELF electromagnetic field based on Quasi-Static Method is introduced while the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes. In order to analyze the power system, Monte Carlo simulation method and contingency analysis method are adopted in normal state and alert state, respectively. In the safety assessment of human body, the approach based on fuzzy linguistic variable is employed to overcome the shortcomings resulting from a crisp set concept. The suggested scheme is applied to a sample system(modified IEEE 14 bus system) to validate the usefulness.

  • PDF

A State Observer of Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.613-616
    • /
    • 2012
  • This paper proposes the state observer design for nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

A Study on the State feedback with Integral Control for a Variable Air Volume Unit (가변 풍량 유닛에 대한 적분기를 가진 상태 궤환 제어에 관한 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.9-14
    • /
    • 2000
  • State feedback with integral control for a variable air volume(VAV) unit which is recently taken notice of for the energy efficiency and saving in the building is studied to investigate the performance of the digital control methodology for the possible practical application. The digital controller which acquires the targat zone temperature and the air flow rate of the supplied air to the zone controls the opening of the damper in the VAV unit. Simulation results are performed for the conditions including reference changes and external thermal variations. In the simulation. simplified conditioned zone and the damper actuator modelling is considered. and relationships between controller gain Parameters and the system dynamics are investigated.

  • PDF

Rotor Resistance Estimation of Induction Motor by ANN (ANN에 의한 유도전동기의 회전자 저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-34
    • /
    • 2006
  • This paper proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

Employee Engagement and Motivation as Mediators between the Linkage of Reward with Employee Performance

  • SISWANTO, Siswanto;MAULIDIYAH, Zahrotul;MASYHURI, Masyhuri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.625-633
    • /
    • 2021
  • This study analyzes the impact of the reward variable on employees' performance through work motivation and employee engagement. This study's specific purpose is to investigate employee engagement's mediating role in the relationship between reward and employee performance. The sample of research is the employee at Sukorejo, Pasuruan Indonesia. The sample is permanent employees at manufacture corporate. The sample size is 150 employees of the total 759 workers through the calculation of the Slovin formula. Respondents in this study were employees with the criteria for having worked for at least last five years. The data obtained is in the form of answers from employees to the statements submitted. The data analysis was used structural equation modeling partial least square. To test the relationship between variables, it was equipped with a Sobel mediation test of statistics. SmartPLS 3.0 is used to help analyze the relationship between variables. The result shows that the reward does not have a direct influence on the performance of employees. However, it has a significant positive effect on the performance of employees through employee engagement. While working motivation variable does not have the role as a mediation variable related to the effect of reward on employee performance.