• Title/Summary/Keyword: state switching

Search Result 1,027, Processing Time 0.025 seconds

Piecewise Linear Diode Models by Region Division for Circuit Simulations (회로 시뮬레이션을 위한 영역 분할식 구분적 선형 다이오드 모델)

  • Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.106-109
    • /
    • 2008
  • Piecewise linear diode models are widely used for large-signal circuit analyses, especially power electronic circuit simulations. When using a piecewise linear diode model for simulation, a switching method to select a proper one among linear models is needed. The conventional switching method keeps the previous ON, OFF state information, and applies different switching conditions according to the state. However, this method has difficulties especially in extending to multi-piecewise linear models. This paper presents a switching method which appropriately divides the v-i plane into regions and select a linear model according to the region where the operating point(the voltage and the current of the diode) belongs. This switching method is easily extended to multi-Piecewise linear models. An example using the tableau analysis and the backward Euler integration is presented for verification.

  • PDF

Design of the High Frequency Resonant Inverter for Corona Surface Processes

  • Choi, Chul-Yong;Lee, Dae-Sik
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • A algorithm for control and performance of a pulse-density-modulated (PDM) series-resonant voltage source inverter developed for corona-dischange precesses is presented. The PDM inverter produces either a square-wave ac-voltage state or a zero-voltage state at its ac terminals to control the average output voltage under constant dc voltage and operating frequency. Moreover it can achieve zero-current-switching (ZCS) and zero-voltage-switching (ZVS) in all the operating condition for a reduction of switching lost. Even though the corona discharge load with a strong nonlinear characteristics, new high frequency resonant inverter is shown the wide range power control from 5% to 100%.

  • PDF

HIERARCHICAL SWITCHING CONTROL OF LONGITUDINAL ACCELERATION WITH LARGE UNCERTAINTIES

  • Gao, F.;Li, K.Q.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.351-359
    • /
    • 2007
  • In this study, a hierarchical switching control scheme based on robust control theory is proposed for tracking control of vehicle longitudinal acceleration in the presence of large uncertainties. A model set consisting of four multiplicative-uncertainty models is set up, and its corresponding controller set is designed by the LMI approach, which can ensures the robust performance of the closed loop system under arbitray switching. Based on the model set and the controller set, a switching index function by estimating the system gain of the uncertainties between the plant and the nominal model is designed to determine when and which controller should be switched into the closed loop. After theoretical analyses, experiments have also been carried out to validate the proposed control algorithm. The results show that the control system has good performance of robust stability and tracking ability in the presence of large uncertainties. The response time is smaller than 1.5s and the max tracking error is about $0.05\;m/S^2$ with the step input.

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

A New Current Controlled PWM technique for NPC Inverter (NPC 인버터를 위한 새로운 전류제어 기법)

  • 이병송;김길동;변윤섭;한영재;박현주
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.63-69
    • /
    • 1998
  • A new current controlled PWM technique with NPC structure is proposed in this paper. A current controlled PWM technique with neutral-point-clamped pulse-width modulation inverter composed of main switching devices which operates as switch for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential is described. The proposed current controller has a first and second current band. The switching pattern will be made by the first current band. According to the second current band, the output state of the switching pattern is changed into positive and negative state. This inverter output contains less harmonic content and lower switching frequency than that of conventional current controlled PWM technique at the same current limit. Two inverters are compared analytically and the performance is investigated by the computer simulation.

  • PDF

A Study of New Operation Mode for High Contrast Ratio and Fast Switching Time in Antiferroelectric Liquid Crystal(AFLC)

  • Lim, Tong-Kun;Baek, Do-Hyeon;Shin, Sung-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.39-42
    • /
    • 2001
  • A new method of switching mode in AFLC cell is proposed for faster switching time and higher contrast ratio. In this mode the ″dark″ state is obtained by applying negative full voltage while the ″bright″ state is achieved by applying positive full voltage to the cell. The switching time is reduced to 100 $mutextrm{s}$ for the cell whose switching time is 22 ms when operated in conventional mode. The contrast ratio is also improved vastly with this method. The possibility of achieving gray scale was shown in this mode of operation.

Mode Switching Smooth Control of Transient Process of Grid-Connected 400 Hz Solid-State Power Supply System

  • Zhu, Jun-Jie;Nie, Zi-Ling;Zhang, Yin-Feng;Han, Yi
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2327-2337
    • /
    • 2016
  • The mode-switching control of transient process is important to grid-connected 400 Hz solid-state power supply systems. Therefore, this paper analyzes the principle of on-grid and islanding operation of the system with or without local loads in the grid-connected process and provides a theoretical study of the effect of different switching sequences on the mode-switching transient process. The conclusion is that the mode switch (MS) must be turned on before the solid-state switch (STS) in the on-grid process and that STS must be turned off before the MS in the off-grid process. A strategy of mode-switching smooth control for transient process of the system is proposed, including its concrete steps. The strategy utilizes the average distribution of peak currents and the smooth adjustment of peak currents and phases to achieve a no-shock grid connection. The simulation and experimental results show that the theoretical analysis is correct and that the method is effective.

Time Optimal Control of Nuclear Reactor with Constraint on Power Overshoot (Overshoot에 구속조건을 갖는 원자여의 시간최적제어)

  • 곽은호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 1975
  • The power overshoot is rises in the output during the transient period when the output of nuclear reactor is increased from the initial state to the desired target state and certain amount of constraint on power level is of primary importance for safety control of nuclear reactor. Therefore, the maximum principle is applied to this process control in transfering its power from the initial state(no, co) to the final target state(2no, 2co or 1.5no, 1.5co), adjusting the reactivity so that its overshoot is limited within the allowable constraint required. In this case, the switching points, switching times, optimal lima and optimal control reactivity are calculated.

  • PDF

Power Loss and Junction Temperature Analysis in the Modular Multilevel Converters for HVDC Transmission Systems

  • Wang, Haitian;Tang, Guangfu;He, Zhiyuan;Cao, Junzheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.685-694
    • /
    • 2015
  • The power loss of the controllable switches in modular multilevel converter (MMC) HVDC transmission systems is an important factor, which can determine the design of the operating junction temperatures. Due to the dc current component, the approximate calculation tool provided by the manufacturer of the switches cannot be used for the losses of the switches in the MMC. Based on the enabled probabilities of each SM in an arm, the current analytical models of the switches can be determined. The average and RMS currents can be obtained from the corresponding current analytical model. Then, the conduction losses can be calculated, and the switching losses of the switches can be estimated according to the upper limit of the switching frequency. Finally, the thermal resistance model of the switches can be utilized, and the junction temperatures can be estimated. A comparison between the calculation and PSCAD simulation results shows that the proposed method is effective for estimating the junction temperatures of the switches in the MMC.

Rules Placement with Delay Guarantee in Combined SDN Forwarding Element

  • Qi, Qinglei;Wang, Wendong;Gong, Xiangyang;Que, Xirong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2870-2888
    • /
    • 2017
  • Recent studies have shown that the flow table size of hardware SDN switch cannot match the number of concurrent flows. Combined SDN Forwarding Element (CFE), which comprises several software switches and a hardware switch, becomes an alternative approach to tackle this problem. Due to the limited capacity of software switch, the way to route concurrent flows in CFE can largely affect the maximum delay that a flow suffers at CFE. As delay-guarantee is a nontrivial task for network providers with the increasing number of delay-sensitive applications, we propose an analytical model of CFE to evaluate a rules placement solution first. Next, we formulate the problem of Rules Placement with delay guarantee in CFE (RPCFE), and present the genetic-based rules placement (GARP) algorithm to solve the RPCFE problem. Further, we validate the analytical model of CFE through simulations in NS-3 and compare the performance of GARP with three benchmark algorithms.