• Title/Summary/Keyword: state monitoring. event

Search Result 35, Processing Time 0.026 seconds

Automatic Recovery and Reset Algorithms for System Controller Errors

  • Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.89-96
    • /
    • 2020
  • Solar lamp systems may not operate normally in the event of some system or controller failure due to internal or external factors, in which case secondary problems occur, which may cost the system recovery. Thus, when these errors occur, a technology is needed to recover to the state it was in before the failure occurred and to enable re-execution. This paper designs and implements a system that can recover the state of the system to the state prior to the time of the error by using the Watchdog Timer within the controller if a software error has occurred inside the system, and it also proposes a technology to reset and re-execution the system through a separate reset circuit in the event of hardware failure. The proposed system provides stable operation, maintenance cost reduction and reliability of the solar lamp system by enabling the system to operate semi-permanently without external support by utilizing the automatic recovery and automatic reset function for errors that occur in the operation of the solar lamp system. In addition, it can be applied to maintain the system's constancy by utilizing the self-operation, diagnosis and recovery functions required in various high reliability applications.

Urbanization and Quality of Stormwater Runoff: Remote Sensing Measurements of Land Cover in an Arid City

  • Kang, Min Jo;Mesev, Victor;Myint, Soe W.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.399-415
    • /
    • 2014
  • The intensity of stormwater runoff is particularly acute across cities located in arid climates. During flash floods loose sediment and pollutants are typically transported across sun-hardened surfaces contributing to widespread degradation of water quality. Rapid, dense urbanization exacerbates the problem by creating continuous areas of impervious surfaces, perforated only by a few green patches. Our work demonstrates how the latest techniques in remote sensing can be used to routinely measure urban land cover types, impervious cover, and vegetated areas. In addition, multiple regression models can then infer relationships between urban land use and land cover types with stormwater quality data, initially sampled at discrete monitoring sites, and then extrapolated annually across an arid city; in our case, the city of Phoenix in Arizona, USA. Results reveal that from 30 storm event samples, solids and heavy metal pollutants were found to be highly related with general impervious surfaces; in particular, with industrial and commercial land use types. Repercussions stemming from this work include support for public policies that advocate environmental sustainability and the more recent focus on urban livability. Also, advocacy for new urban construction and re-development that both steer away from vast unbroken impervious surfaces, in place of more fragmented landscapes that harmonize built and green spaces.

Cluster and information entropy analysis of acoustic emission during rock failure process

  • Zhang, Zhenghu;Hu, Lihua;Liu, Tiexin;Zheng, Hongchun;Tang, Chun'an
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • This study provided a new research perspective for processing and analyzing AE data to evaluate rock failure. Cluster method and information entropy theory were introduced to investigate temporal and spatial correlation of acoustic emission (AE) events during the rock failure process. Laboratory experiments of granite subjected to compression were carried out, accompanied by real-time acoustic emission monitoring. The cumulative length and dip angle curves of single links were fitted by different distribution models and distribution functions of link length and directionality were determined. Spatial scale and directionality of AE event distribution, which are characterized by two parameters, i.e., spatial correlation length and spatial correlation directionality, were studied with the normalized applied stress. The entropies of link length and link directionality were also discussed. The results show that the distribution of accumulative link length and directionality obeys Weibull distribution. Spatial correlation length shows an upward trend preceding rock failure, while there are no remarkable upward or downward trends in spatial correlation directionality. There are obvious downward trends in entropies of link length and directionality. This research could enrich mathematical methods for processing AE data and facilitate the early-warning of rock failure-related geological disasters.

LSTM-based Business Process Remaining Time Prediction Model Featured in Activity-centric Normalization Techniques (액티비티별 특징 정규화를 적용한 LSTM 기반 비즈니스 프로세스 잔여시간 예측 모델)

  • Ham, Seong-Hun;Ahn, Hyun;Kim, Kwanghoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.83-92
    • /
    • 2020
  • Recently, many companies and organizations are interested in predictive process monitoring for the efficient operation of business process models. Traditional process monitoring focused on the elapsed execution state of a particular process instance. On the other hand, predictive process monitoring focuses on predicting the future execution status of a particular process instance. In this paper, we implement the function of the business process remaining time prediction, which is one of the predictive process monitoring functions. In order to effectively model the remaining time, normalization by activity is proposed and applied to the predictive model by taking into account the difference in the distribution of time feature values according to the properties of each activity. In order to demonstrate the superiority of the predictive performance of the proposed model in this paper, it is compared with previous studies through event log data of actual companies provided by 4TU.Centre for Research Data.

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

Healthcare and Emergency Response Service Platform Based on Android Smartphone

  • Choi, Hoan-Suk;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.16 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • As the elderly population is becoming an aging society, the elderly are experiencing many problems. Social security costs for the elderly are increasing and the un-linked social phenomenon is emerging. Thus, the social infrastructure and welfare system established in the past economic growth period are in danger of not functioning properly. People socially isolated or with chronic diseases among the elderly are exposed to various accidents. Thus, an active healthcare management service is imperative. Additionally, in the event of a dangerous situation, the system must have ways to notify guardians (family or medical personnel) regarding appropriate action. Thus, in this paper, we propose the smartphone-based healthcare and emergency response service platform. The proposed service platform aggregates movement of relevant data in real-time using a smartphone. Based on aggregated data, it will always recognize the user's movements and current state using the human motion recognition mechanism. Thus, the proposed service platform provides real-time status monitoring, activity reports, a health calendar, location-based hospital information, emergency situation detection, and cloud messaging server-based efficient notification to several subscribers such as family, guardians, and medical personnel. Through this service, users or guardians can augment the level of care for the elderly through the reports. Also, if an emergency situation is detected, the system immediately informs guardians so as to minimize the risk through immediate response.

Development of the Electrodermal Activity Monitoring System for the Evaluation of Train Driver's Arousal State (기관사의 각성상태 평가를 위한 소형 피부전기활성도 측정 시스템 개발)

  • Lim, Min-Gyu;Lee, Young-Jae;Lee, Kang-Hwi;Kang, Seung-Jin;Kim, Kyeung-Nam;Park, Hee-Jung;Yang, Heui-Kyung;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1286-1293
    • /
    • 2014
  • Typically, studies through the simulation system have been progressed, because the evaluation of the driver's arousal state about the service of a actual train has risk of safety for the driver. When configured event same as the real in simulation system, the ability to cope with an accident situation may be the same each other. But the difference in the state of tension or arousal will occur. In this study, requested to cooperate with the railways in order to escape from these constraints, and the target of the experiment was to real engineer service. I was set about experiment when the train was stopped as safe as possible. As a result, the beta wave of EEG signals that representing complex calculations or anxiety is increased rapidly on the basis of a flag station from at the time of departure. The size of the electrodermal activity signal in response to movement of the body gave a noticeable. In terms of HRV, if the train approach a flag station gradually and the R-R interval is narrowed. So that the driver can be estimated as arousal state. In accordance with this study, if the quantitative standard of arousal state be based on the driver's biosignals will provide, it will be able to take advantage of development the system that would prevent train accidents caused by human error.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Tracking and Tracing the Status Changes of Sensor Tags based on the SIP Presence Model (SIP 프레즌스 모델 기반 센서 태그의 상태이력 추적)

  • Kim, Dong-Uk;Hong, Jin-Pyo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • The EPC-Discovery Service (EPC-DS) is a good representative of the RFID Track & Trace. But this mechanism has several problems. EPC-DS uses centralized server scheme which may arise bottle-neck state and that cannot provide detail trace information of a RFID object. In addition, a trace node requires direct access method to a RFID object or an element which has information of the RFID object for Track & Trace. In this paper, we propose a novel RFID Track & Trace mechanism which based on the SIP presence model and SIP event notification. This mechanism can provide detail trace information and monitoring function, and also can rid the bottle-neck section by combination of SIP methods instead of centralized element.

A Study on Intelligent On-line Tool Conditon Monitoring System for Turning Operations (선삭공작을 위한 지능형 실시간 공구 감시 시스템에 관한 연구)

  • Choe, Gi-Hong;Choe, Gi-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.22-35
    • /
    • 1992
  • In highly automated machining centers, intelligent sensor fddeback systems are indispensable on order to monitor their operations, to ensure efficient metal removal, and to initate remedial action in the event of accident. In this study, an on-line tool wear detection system for thrning operations is developed, and experimentally evaluated. The system employs multiple sensors and the signals from these sensors are processed using a multichannel autoegressive (AR) series model. The resulting output from the signal processing block is then fed to a previously tranied artificial neural network (multiayered perceptron) to make a final decision on the state of the cutting tool. To learn the necessary input/output mapping for tool wear detection, the weithts and thresholds of the network are adjusted according to the back propagation (BP) method during off-line training. The results of experimental evaluation show that the system works well over a wide range of cutting conditions, and the ability of the system to detect tool wear is improved due to the generalization, fault-tolearant and self-ofganizing properties of the neural network.

  • PDF