• Title/Summary/Keyword: state matrix

Search Result 1,545, Processing Time 0.028 seconds

Effects of Three-dimensional Scaffolds on Cell Organization and Tissue Development

  • Yan Li;Yang, Shang-Tian
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.311-325
    • /
    • 2001
  • Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.

  • PDF

Comparison of the first and the second order eigenvalue sensitivity coefficients affected by generator modeling (발전기 모델링 정도에 의한 고유치 일차${\cdot}$이차 감도계수 비교)

  • Kim Deok Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.345-347
    • /
    • 2004
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator has an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multi-machine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimizing controller parameters to improve system stability. This paper compare the first and second order eigenvalue sensitivity coefficients of controllers using generator full model with those of two-axis model. As a result of an example, the estimated eigenvalues using the first and the second eigenvalue sensitivity coefficients using generator full model is very close to those of state matrix. Also the error ratios throughout a wide range of controller parameters is less than $1\%$.

  • PDF

Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems (섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계)

  • Park, Ju-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

Development Of Small Signal Stablility Linear Analysis Program for Large Scale Power System. (대규모 전력계통의 미소신호 안정도 해석을 위한 선형해석 프로그램 개발)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Kim, Yong-Gu;Kim, Dong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1054-1056
    • /
    • 1999
  • It is the most important in small signal stability analysis of large scale Power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. In this Paper evoluted linear analysis program, transformed state matrix using Inverse transformation with complex shift and then Hessenberg process and iterative scheme are used to accelerate Hessenberg process, can calculate dominant eigenvalues. In this Paper, The accuracy of this Program has been validated against 4-machines 11-bus system and New England 10-machines 39-bus system. Also applied to KEPCO system - about 791-bus 250-machines 2500-branches, got 2568 order state matrix, and calculated two dominant modes. This analysis result equaled to result of EPRI's SSSP program to use commonly, and calculating time is faster.

  • PDF

Eigenvalue Sensitivity Analysis Based on the Structure of System State Matrix (제어기 매개변수를 고려한 전력계통의 고유치감도 해석에 관한 연구)

  • Kwon, S.H.;Ro, K.M.;Kim, D.Y.;Kim, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.157-160
    • /
    • 1992
  • An approximate method for the dominant eigenvalue of one machine connected to the infinite bus has been suggested. This method is based on combining the traditional eigenvalue sensitivity analysis and the structure of the system state matrix. Numerical examples are presented. This method is considered to be quite useful in the stability analysis for various initial conditions and for adjustment of generator controller parameters.

  • PDF

Observer Design for Discrete-Time Nonlinear Systems with Output Delay (출력지연을 갖는 이산시간 비선형 시스템의 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.26-30
    • /
    • 2012
  • This paper presents the observer design method for discrete-time nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the discrete-time nonlinear error dynamics with time delay can be transformed into the discrete-time linear one with time delay. Sufficient conditions for existence of state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

A Fractional Model Reduction for T-S Fuzzy Systems with State Delay

  • Yoo Seog-Hwan;Choi Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.184-189
    • /
    • 2006
  • This paper deals with a fractional model reduction for T-S fuzzy systems with time varying delayed states. A contractive coprime factorization of time delayed T-S fuzzy systems is defined and obtained by solving linear matrix inequalities. Using generalized controllability and observability gramians of the contractive coprime factor, a balanced state space realization of the system is derived. The reduced model will be obtained by truncating states in the balanced realization and an upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is performed.

A Balanced Model Reduction for Linear Parameter Varying Systems (시변 파라메터를 갖는 선형시스템의 균형화된 모델 간략화)

  • Yoo, Seog-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.351-356
    • /
    • 2002
  • This papaer deals with a model reduction problem for linear systems with time varying parameters. For this problem, a controllability Grammian and an observability Grammian are introduced and computed by solving linear matrix inequalities. Using the controllability/observability Grammian, a balanced state space realization for linear parameter varying systems is obtained. From the balanced state space realization, a reduced model can be obtained by truncating not only states but also time varying parameters and an upper bound of the model reduction error is derived as well.

Structural Durability Analysis of Tie Rod (타이로드의 구조적 내구성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.68-75
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the tie rod configuration. The maximum displacement amplitude is happened at 156Hz by harmonic vibration analysis, this tie rod model can be broken as the weakest state. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sine wave' becomes most stable. In case of 'Sine wave' with the average stress of 0MPa and the amplitude stress of 570MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 140 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on tie rod by investigating prevention and durability against its damage.

Global Regulation of a Class of Nonlinear Systems with Time-varying Delays in the Input and States with Matrix Inequality and Non-predictor Methods (행렬 부등식과 비예측 기법을 이용한 입력과 상태에 시변지연이 있는 비선형 시스템의 전역 안정화)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.491-495
    • /
    • 2016
  • We deal with the regulation problem of nonlinear systems with time-varying delays in both the states and input. A new state feedback controller with dynamic gains is developed based on matrix inequality and non-predictor methods. The proposed control scheme is analyzed using the Razumikhin theorem, and its effectiveness is demonstrated with simulation results.