• Title/Summary/Keyword: state delay

Search Result 954, Processing Time 0.023 seconds

Reliability Evaluation of AGT Vehicle System Using Markov Chains (마코프 체인을 이용한 고무차륜 AGT 차량 시스템의 신뢰성 평가)

  • Ha Chen-Soo;Han Seok-Youn
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.539-544
    • /
    • 2004
  • In this paper, we present reliability modeling and analysis method of the Automated Guideway Transit(AGT) vehicle system using analytical models, based on Markov Chains. The Markov model can express state transition of the AGT vehicle sys. that is considered to be in one of four states, such as basic operating (0), minor delay(1), major delay(2) and non-operating(3) state. The proposed Markov model is illustrated with a numerical example and cases to find a steady state availability, MTBF(mean time between failures), and MTTR(mean time to repair) under specified failure and repair rate arc demonstrated.

  • PDF

Asymptotic Stability of Discrete Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun;Kang, Chang-Ik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.580-585
    • /
    • 1999
  • This paper deals with the stability of discrete time linear systems with time varying delays in state. In this paper, the magnitude of time-varying delays is assumed to be upper-bouded. The stability of discrete time linear systems with time-varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

Analysis of Real-time Error for Geo/D/1/1 Model (Geo/D/1/1 모형에서의 실시간 원격 추정값의 오차 분석)

  • Yutae, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.135-138
    • /
    • 2023
  • In this paper, we study real-time error in the context of monitoring a binary information source through a delay system. To derive the average real-time error, we model the delay system as a discrete time Geo/D/1/1 queueing model. Using a discrete time three-dimensional Markov chain with finite state space, we analyze the queueing model. We also perform some numerical analysis on various system parameters: state transition probabilities of binary information source; transmission times; and transmission frequencies. When the state changes of the information source are positively correlated and negatively correlated, we investigate the relationship between transmission time and transmission frequency.

Analysis of Real-time Error for Remote Estimation Based on Binary Markov Chain Model (이진 마르코프 연쇄 모형 기반 실시간 원격 추정값의 오차 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.317-320
    • /
    • 2022
  • This paper studies real-time error in the context of monitoring a symmetric binary information source over a delay system. To obtain the average real-time error, the delay system is modeled and analyzed as a discrete time Markov chain with a finite state space. Numerical analysis is performed on various system parameters such as state transition probabilities of information source, transmission times, and transmission frequencies. Given state transition probabilities and transmission times, we investigate the relationship between the transmission frequency and the average real-time error. The results can be used to investigate the relationship between real-time errors and age of information.

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

A Modified Capacitor Current Feedback Active Damping Approach for Grid Connected Converters with an LCL Filter

  • Wan, Zhiqiang;Xiong, Jian;Lei, Ji;Chen, Chen;Zhang, Kai
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1286-1294
    • /
    • 2015
  • Capacitor current feedback active damping is extensively used in grid-connected converters with an LCL filter. However, systems tends to become unstable when the digital control delay is taken into account, especially in low switching frequencies. This paper discusses this issue by deriving a discrete model with a digital control delay and by presenting the stable region of an active damping loop from high to low switching frequencies. In order to overcome the disadvantage of capacitor current feedback active damping, this paper proposes a modified approach using grid current and converter current for feedback. This can expand the stable region and provide sufficient active damping whether in high or low switching frequencies. By applying the modified approach, the active damping loop can be simplified from fourth-order into second-order, and the design of the grid current loop can be simplified. The modified approach can work well when the grid impedance varies. Both the active damping performance and the dynamic performance of the current loop are verified by simulations and experimental results.

Depletion Kinetics of the Ground State CrO Generated from the Reaction of Unsaturated Cr(CO)x with O2 and N2O

  • Son, H.S.;Ku, J.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.184-188
    • /
    • 2002
  • Unsaturated $Cr(CO)_x(1{\leq}x{\leq}5)$molecules were generated in the gas phase from photolysis of $Cr(CO)_6$vapor in He using an unfocussed weak UV laser pulse and their reactions with $O_2$ and $N_2O$ have been studied. The formation and disappearance of the ground state CrO molecules were identified by monitoring laser-induced fluorescence(LIF) intensities vs delay time between the photolysis and probe pulses. The photolysis laser power dependence as well as the delay time dependence of LIF intensities from the CrO orange system showed different behavior as those from ground state Cr atoms, suggesting that the ground state CrO molecules were generated from the reaction between $O_2/N_2O$ and photo-fragments of $Cr(CO)_6$ by one photon absorption. The depletion rate constants for the ground state CrO by $O_2$ and $N_2O$ are $5.4{\pm}0.2{\times}10^{-11}$ and $6.5{\pm}0.4{\times}10^{-12}cm^3molecule^{-1}s^{-1}$, respectively.

Control Strategy Based on Equivalent Fundamental and Odd Harmonic Resonators for Single-Phase DVRs

  • Teng, Guofei;Xiao, Guochun;Hu, Leilei;Lu, Yong;Kafle, Yuba Raj
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.654-663
    • /
    • 2012
  • In this paper, a digital control strategy based on equivalent fundamental and odd harmonic resonators is proposed for single-phase DVRs. By using a delay block, which can be equivalent to a bank of resonators, it rejects the fundamental and odd harmonic disturbances effectively. The structure of the single closed-loop control system consists of a delay block, a proportional gain and a set of zero phase notch filters. The principle of the controller design is discussed in detail to ensure the stability of the system. Both the supply voltage and the load current feedforwards are used to improve the response speed and the ability to eliminate disturbances. The proposed controller is simple in terms of its structure and implementation. It has good performances in harmonic compensation and dynamic response. Experimental results from a 2kW DVR prototype confirm the validity of the design procedure and the effectiveness of the control strategy.

Deadbeat Control with a Repetitive Predictor for Three-Level Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.583-590
    • /
    • 2011
  • Three-level NPC inverters have been put into practical use for years especially in high voltage high power grids. This paper researches three-level active power filters (APFs). In this paper a mathematical model in the d-q coordinates is presented for 3-phase 3-wire NPC APFs. The deadbeat control scheme is obtained by using state equations. Canceling the delay of one sampling period and providing the predictive value of the harmonic current is a key problem of the deadbeat control. Based on this deadbeat control, the predictive output current value is obtained by the state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by the repetitive predictor synchronously. The repetitive predictor can achieve a better prediction of the harmonic current with the same sampling frequency, thus improving the overall performance of the system. The experiment results indicate that the steady-state accuracy and the dynamic response are both satisfying when the proposed control scheme is implemented.

OQMCAR: An enhanced network coding-aware routing algorithm based on queue state and local topology

  • Lu, Cunbo;Xiao, Song;Miao, Yinbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2875-2893
    • /
    • 2015
  • Existing coding aware routing algorithms focused on novel routing metric design that captures the characteristics of network coding. However, in packet coding algorithm, they use opportunistic coding scheme which didn't consider the queue state of the coding node and are equivalent to the conventional store-and-forward method in light traffic load condition because they never delay packets and there are no packets in the output queue of coding node, which results in no coding opportunity. In addition, most of the existing algorithms assume that all flows participating in the network have equal rate. This is unrealistic since multi-rate environments are often appeared. To overcome above problem and expand network coding to light traffic load scenarios, we present an enhanced coding-aware routing algorithm based on queue state and local topology (OQMCAR), which consider the queue state of coding node in packet coding algorithm where the control policy is of threshold-type. OQMCAR is a unified framework to merge single rate case and multiple rate case, including the light traffic load scenarios. Simulations results show that our scheme can achieve higher throughput and lower end-to-end delay than the current mechanisms using COPE-type opportunistic coding policy in different cases.