• Title/Summary/Keyword: state coupling

Search Result 545, Processing Time 0.048 seconds

Technology of Location-Based Service for Mobile Tourism (모바일 관광을 위한 위치 기반 서비스 기술)

  • Lee, Geun-Sang;Kim, Ki-Jeong;Kim, Hyoung-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • This study developed the algorithm of location-based service for supplying the efficient tourism service to traveller using mobile device and applied it to the Jeonju HANOK village. First, the location service was advanced using algorithm coupling with GPS error range and travel speed in single line, and with GPS location and nearest neighbor method to line in multiple one. Also this study developed a program using DuraMap-Xr spatial engine for establishing topology to Node and Link in line automatically. And the foundation was prepared for improving travel convenience by programming location-based service technology to single and multiple lines based on Blackpoint-Xr mobile application engine.

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소해석)

  • 황재호;고대철;민규식;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

Gas Transport Behavior of Polydopamine-Coated Composite Membranes (폴리도파민/미세다공성 복합막의 기체투과특성)

  • Kim, Hyo Won;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • Recently, a novel coating method using an aqueous doapmine solution was proposed, the deposited coating was found to have extraordinarily strong-adhesion to numerous materials such as metal and polymers. However, it has suffered from many controversy in scientific fields due to its final structure and deposited mechanisms. Here, we have proposed a new structure for final dopamine product coupling with solid state spectroscopic, thermal behavior, and gas transport behaviors of dopamine coated microporous polyethersulfone membranes. In its final analysis, the results represented that it is a supramolecular aggregated of monomers consisting of 5,6-dihydroxyindoline and its derivative in contrast to previously proposed polymeric structure.

Synthesis of Palladium Nanocubes/Nanorods and Their Catalytic Activity for Heck Reaction of Iodobenzene

  • Ding, Hao;Dong, Jiling
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.105-109
    • /
    • 2016
  • Palladium has been used as a catalyst not only in Suzuki and Heck cross coupling reaction in organic chemistry, but also in automobile industry for the reduction of vehicle exhausts. The catalytic activity of Pd nanoparticles depends strongly on their size and exposed crystalline facets. In this study, the single crystalline palladium nanocubes/nanorods were prepared in the presence of polyvinyl pyrrolidone (PVP) and potassium bromide (KBr) using the polyol method. Selected area diffraction pattern and high-resolution transmission electron microscopy (TEM) were performed by TEM. The result shows that the ratio of KBr/PVP is the key factor to determine whether the product is cubes or rods. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The catalytic activity of these Pd nanocubes towards heck reaction of iodobenzene with acrylate or acrylic acid was found to be higher than that of Pd nanorods. We suspect it is caused by the difference of energy state while Pd nanocubes is {100} plane and nanorods is {111} plane.

Equivalent Circuit Parameters of S-band 1.5 Cell RF Gun Cavity

  • Kim, Ki-Young;Kang, Heung-Sik;Tae, Heung-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • We determined equivalent circuit parameters of a 1.5 cell S-band RF gun cavity from the resonant characteristics of its decoupled cavities(half cell and full cell) using the code SUPERFISH. Equivalent circuit parameters of the 1.5 cell RF gun cavity resonated in the 0-mode were obtained easily from the circuit parameters of each decoupled cavities. In order to obtain equivalent circuit parameters for the $\pi$ -mode cavity, we calculated the differences of the resonant frequencies and the equivalent resistances between the 0- and $\pi$ -modes with slight variations of the radius and thickness of the coupling iris. From those differences, we obtained R/Q value and equivalent resistance of the $\pi$ -mode, which are directly related to the equivalent circuit parameters of the coupled cavity. Using calculated R/Q value, we can express equivalent inductance, capacitance and resistances of the RF gun cavity resonated in the $\pi$ -mode, which can be useful for analyzing coupled cavities in a steady state.

Dielectric and Piezoelectric Properties of Pb(Zn,Ni,Nb)O3-Pb(Zr,Ti)O3 Ceramics for AE Sensor (음향 방출 센서용 Pb(Zn,Ni,Nb)O3-Pb(Zr,Ti)O3 세라믹스의 유전 및 압전 특성)

  • Han, Jong-Dae;Yoo, Ju-Hyun;Jeong, Hoy-Seung;Seo, Dong-Hir
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.466-469
    • /
    • 2016
  • In this study, in order to develop composition ceramics for Acoustic Emission (abbreviated as AE) sensor application, the PZT system ceramics was fabricated by conventional solid state reaction method. When x=0.48, the density, electromechanical coupling factor($k_p$), piezoelectric coefficient $d_{33}$ and piezoelectric voltage constant $g_{33}$ of the maximum values of $7.857g/cm^3$, 0.51, 190[pC/N], 52[$10^{-3}mV/N$] were obtained, respectively, suitable for AE sensor.

Practical fatigue/cost assessment of steel overhead sign support structures subjected to wind load

  • van de Lindt, John W.;Ahlborn, Theresa M.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.343-356
    • /
    • 2005
  • Overhead sign support structures number in the tens of thousands throughout the trunk-line roadways in the United States. A recent two-phase study sponsored by the National Cooperative Highway Research Program resulted in the most significant changes to the AASHTO design specifications for sign support structures to date. The driving factor for these substantial changes was fatigue related cracks and some recent failures. This paper presents the method and results of a subsequent study sponsored by the Michigan Department of Transportation (MDOT) to develop a relative performance-based procedure to rank overhead sign support structures around the United States based on a linear combination of their expected fatigue life and an approximate measure of cost. This was accomplished by coupling a random vibrations approach with six degree-of-freedom linear dynamic models for fatigue life estimation. Approximate cost was modeled as the product of the steel weight and a constructability factor. An objective function was developed and used to rank selected steel sign support structures from around the country with the goal of maximizing the objective function. Although a purely relative approach, the ranking procedure was found to be efficient and provided the decision support necessary to MDOT.

An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure (초임계 압력하의 기체수소-액체산소 화염에 대한 난류모델을 이용한 해석에서 수치기법 평가)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2013
  • Turbulent flow and thermal fields of gaseous hydrogen/liquid oxygen flames at supercritical pressure are investigated by turbulence models. The modified Soave-Redlich-Kwong (SRK) EOS is implemented into the flamelet model to realize real-fluid combustions. For supercritical fluid flows, the modified pressure-velocity-density coupling are introduced. Based on the algorithm, the relative performance of six convection schemes and the predictions of four turbulence models are compared. The selected turbulence models are needed to be modified to consider various characteristics of real-fluid combustions.

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.