• Title/Summary/Keyword: state coupling

Search Result 545, Processing Time 0.093 seconds

A Study on Harmonics Analysis and Modelling for Distribution System (배전 시스템의 고조파 분석 및 모델링에 관한 연구)

  • Wang, Yong-Peel;Jeong, Jong-Won;Jeong, Dong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.62-68
    • /
    • 2007
  • The increasing use of power electronic equipment in distribution system has been the reason for the greater concern about a harmonic in recent time. Therefore, it is necessary for measurement and modelling to analyze a harmonic level and a transfer characteristic in distribution system. In this paper, the Point of Common Coupling (PCC) is selected to analyze harmonic characteristic of distribution system by IEC 61000-3-6. Harmonic voltage and orient were measured at the PCC of real distribution system Harmonic distribution, nonlinear load component and Total Harmonic Distortion(THD) were verified. The effective and accurate modelling of real distribution system were proved through a analysis of harmonic impedance, voltage and current under steady-state. Harmonic transfer characteristic were investigated through a analysis of harmonic voltage and current under harmonic current source.

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF

The Susceptibility of LNA(Low Noise Amplifier) Due To Front-Door Coupling Under Narrow-Band High Power Electromagnetic Wave (안테나에 커플링되는 협대역 고출력 전자기파에 대한 저잡음 증폭기의 민감성 분석)

  • Hwang, Sun-Mook;Huh, Chang-Su
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.440-446
    • /
    • 2015
  • This study has examined susceptibility of LNA(Low Noise Amplifier) due to Front-Door Coupling under Narrow-Band high power electromagnetic wave. M/DFR(Malfunction/Destruction Failure Rate) was measured to investigate the diagnostic of IC test. In addition, decapsulation analysis was used to understand the inside of the chip state in LNA devices. The experiments is employed as an open-ended waveguide to study the destruction effects of LNA using a 2.45 GHz Magnetron as a high power electromagnetic wave. The susceptibility level of LNA was assessed by electric field strength, and its failure modes were observed. The malfunction of LNA device has showed as the type of self-reset and power-reset. The electric field strength of malfunction threshold is 524 V/m and 1150 V/m respectively. Also, he electric field of destruction threshold is 1530 V/m. Three types of damaged LNA were observed by decapsulation analysis: component, onchipwire, and bondwire destruction. Based on these results, the susceptibility of the LNA can be applied to a database to help elucidate the effects of microwaves on electronic equipment.

A Study on Characteristic of Superconductivity and Microstructure of $Y_1Ba_2Cu_3O_{7-y}$-Ag ($Y_1Ba_2Cu_3O_{7-y}$-Ag의 초전도성과 미세구조의 특성 연구)

  • Kim, Chae-Ok;Park, Jeong-Su;Yu, Deok-Su
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.786-793
    • /
    • 1995
  • Ag-doped $Y_1$Ba$_2$Cu$_3$O$_{7-y}$ samples have been prepared by solid state reaction. High-Tc super conductivity, microstructure and mechanical property of the Ag-doped $Y_1$Ba$_2$Cu$_3$O$_{7-y}$ samples have been studied. As the Ag content increased, the grain size of $Y_1$Ba$_2$Cu$_3$O$_{7-y}$, increased and connectivity between the grains was improved, and the sample becomed denser and harder than the undoped. From the result, it is concluded that Ag addition reduced weak link and weak coupling between grains and led to the strong coupling. Furthermore, the anisotropy of crytstal structure was decreased and thermal stability, mechanical property of $Y_1$Ba$_2$Cu$_3$O$_{7-y}$-Ag were improved.mproved.

  • PDF

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

FE Analysis of Rock-Socketed Drilled Shafts Using Load Transfer Method (유한요소해석을 통한 암반에 근입된 현장타설말뚝의 하중전이거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.33-40
    • /
    • 2008
  • The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using the 2D elasto-plastic finite element analysis. Slippage and shear load transfer behavior at the pile-soil interface are investigated by using a user-subroutine interface model (FRlC). It is shown that the coupled soil resistance provides the influence of pile toe settlement as the shaft resistance is increased to an ultimate limit state. The results show that the coupling effect is closely related to the value of pile diameter over rock mass modulus (D/$E_{mass}$) and the ratio of total shaft resistance against total applied load ($R_s$/Q). Through comparisons with field case studies, the 2D numerical analysis reseanably presented load transfer of pile and coupling effect due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

Numerical simulations of interactions between solitary waves and elastic seawalls on rubble mound breakwaters

  • Lou, Yun-Feng;Luo, Chuan;Jin, Xian-Long
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.393-410
    • /
    • 2015
  • Two dimensional numerical models and physical models have been developed to study the highly nonlinear interactions between waves and breakwaters, but several of these models consider the effects of the structural dynamic responses and the shape of the breakwater axis on the wave pressures. In this study, a multi-material Arbitrary Lagrangian Eulerian (ALE) method is developed to simulate the nonlinear interactions between nonlinear waves and elastic seawalls on a coastal rubble mound breakwater, and is validated experimentally. In the experiment, a solitary wave is generated and used with a physical breakwater model. The wave impact is validated computationally using a breakwater - flume coupling model that replicates the physical model. The computational results, including those for the wave pressure and the water-on-deck, are in good agreement with the experimental results. A local breakwater model is used to discuss the effects of the structural dynamic response and different design parameters of the breakwater on wave loads, together with pressure distribution up the seawall. A large-scale breakwater model is used to numerically study the large-scale wave impact problem and the horizontal distribution of the wave pressures on the seawalls.