• Title/Summary/Keyword: state constraint

Search Result 335, Processing Time 0.027 seconds

Camera pose estimation framework for array-structured images

  • Shin, Min-Jung;Park, Woojune;Kim, Jung Hee;Kim, Joonsoo;Yun, Kuk-Jin;Kang, Suk-Ju
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.10-23
    • /
    • 2022
  • Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes.

2 - 4 ㎛ Spectroscopy of Red Point Sources in the Galactic Center

  • Jang, DaJeong;An, Deokkeun;Sellgren, Kris;Ramirez, Solange V.;Boogert, Adwin;Geballe, Tom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2019
  • We present results from our long-term observing campaign, using the NASA IRTF at Maunakea, to obtain 2 - 4 ㎛ spectra of 118 red point sources in the line of sight to the Galactic Center (GC). Our sample is largely composed of point sources selected from near- and mid-infrared photometry, but also includes a number of massive young stellar objects. Many of these sources show high foreground extinction as shown by deep 3.4 ㎛ aliphatic hydrocarbon absorption feature, which is a characteristic of the diffuse ISM and comes from the long line of sight through the diffuse medium toward the Central Molecular Zone (CMZ), the central 300 pc region of the GC. The deep 3.1 ㎛ H2O ice absorption band coming from the local, dense material in the GC CMZ suggests that most sources are likely located in the GC CMZ. A few of these sources show weak CCH3OH ice absorption at 3.535 ㎛, which can provide a strong constraint on the CCH3OH ice formation in the unique environment of the CMZ. From the best-fitting models, the optical depths of these features are determined and used to generate a well-rounded view of the ice composition across the GC CMZ and the spectral characteristics of massive YSOs in the GC.

  • PDF

Proactive Longitudinal Motion Planning for Improving Safety of Automated Bus using Chance-constrained MPC with V2V Communication (자율주행 버스의 주행 안전을 위한 차량 간 통신 및 모델 예측 제어 기반 종 방향 거동 계획)

  • Ara Jo;Michael Jinsoo Yoo;Jisub Kwak;Woojin Kwon;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.16-22
    • /
    • 2023
  • This paper presents a proactive longitudinal motion planning algorithm for improving the safety of an automated bus. Since the field of view (FOV) of the autonomous vehicle was limited depending on onboard sensors' performance and surrounding environments, it was necessary to implement vehicle-to-vehicle (V2V) communication for overcoming the limitation. After a virtual V2V-equipped target was constructed considering information obtained from V2V communication, the reference motion of the ego vehicle was determined by considering the state of both the V2V-equipped target and the sensor-detected target. Model predictive control (MPC) was implemented to calculate the optimal motion considering the reference motion and the chance constraint, which was deduced from manual driving data. The improvement in driving safety was confirmed through vehicle tests along actual urban roads.

A Study on the Optimal Limit State Design of Reinforced Concrete Flat Slab-Column Structures (한계상태설계법(限界狀態設計法)에 의한 철근(鐵筋)콘크리트 플래트 슬라브형(型) 구조체(構造體)의 최적화(最適化)에 관한 연구(研究))

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 1984
  • The aim of this study is to establish a synthetical optimal method that simultaneously analyze and design reinforced concrete flat slab-column structures involving multi-constraints and multi-design variables. The variables adopted in this mathematical models consist of design variables including sectional sizes and steel areas of frames, and analysis variable of the ratio of bending moment redistribution. The cost function is taken as the objective function in the formulation of optimal problems. A number of constraint equations, involving the ultimate limit state and the serviceability limit state, is derived in accordance with BSI CP110 requirements on the basis of limit state design theory. Both objective function and constraint equations derived from design variables and an analysis variable generally become high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm is developed so as to analyze and design the structures considered in this study. The developed algorithm is directly applied to a few reinforced concrete flat slab-column structures to assure the validity of it and the possibility of optimization From the research it is found that the algorithm developed in this study is applicable to the optimization of reinforced concrete flat slab column structures and it converges to a optimal solution with 4 to 6 iterations regardless of initial variables. The result shows that an economical design can be possible when compared with conventional designs. It is also found that considering the ratio of bending moment redistribution as a variable is reasonable. It has a great effect on the composition of optimal sections and the economy of structures.

  • PDF

Path-based Dynamic User Equilibrium Assignment Model using Simulation Loading Method (시뮬레이션 부하기법을 이용한 경로기반 동적통행배정모형의 개발)

  • 김현명;임용택;백승걸
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 2001
  • Since late 1970s. one of the principal research areas in transportation problem is dynamic traffic assignment (DTA). Although many models have been developed regarding DTA, yet they have some limits of describing real traffic patterns. This reason comes from the fact that DTA model has the time varying constraints such as state equation, flow propagation constraint, first in first out(FIFO) rule and queuing evolution. Thus, DTA model should be designed to satisfy these constraints as well as dynamic route choice condition, dynamic user equilibrium. In this respect, link-based DTA models have difficulty in satisfying such constraints because they have to satisfy the constraints for each link, while path-based DTA models may easily satisfy them. In this paper we develop a path-based DTA model. The model includes point queue theory to describe the queue evolution and simulation loading method for depicting traffic patterns in more detail. From a numerical test, the model shows promising results.

  • PDF

Effects of Four Sides Constraint for Shear Strength of ${\sharp}$ Shape Double Beam-Column Connections (정(${\sharp}$)자형 더블보-기둥 접합부의 전단강도에 대한 4변 구속의 영향)

  • Kim, Lyang-Woon;Chung, Chang-Yong;Lee, Soo-Kueon;Kim, Sang-Sik;Choi, Kwang-Ho;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.209-212
    • /
    • 2008
  • DBS method of underground works can reduce the term of works for manufacturing the underground members in factory and producing members in modularization, apart from that, the horizontal member could be used as permanent members, which are the advantages of this method. As the component element of DBS method, in order th transfer the vertical load on horizontal member to the column during the construction or in service, developed ${\sharp}$ shaped double beam-column connection is dominated by shear failure in the complicated state of multi-axial stresses. In this study, in order to check the shear-failure mechanism of ${\sharp}$ shaped connection of double beam-column and an increase of shear internal force with the thickness of the steel plate. 7 specimens were made and one-way static tests. All of the specimens were subjected to brittle failure. Constraint of slab will increase its shear strength by 1.06${\sim}$1.48 times. Shear strength of slabs with different constraints steel plate in two-way increase more than which are same. So the slab with different constraints steel plate will be more effective.

  • PDF

Optimization and Evaluation of Flight Control Laws to Satisfy Longitudinal Handling Quality and Stability Margin Requirements (종축 비행성 요구도 및 안정성 여유 만족을 위한 비행제어법칙 최적화 및 평가)

  • Kim, Seong Hyeon;Ko, Deuk Won;Lee, Tae Hyun;Kim, Dong Hwan;Kim, Byoung Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.8-15
    • /
    • 2021
  • This paper describes a design method using an optimization technique to satisfy the longitudinal handling quality of high maneuverable jet aircraft. The dynamic inversion technique was applied to the target aircraft, and the control gain optimization satisfied the longitudinal short-period handling quality, however, the stability margin was not considered. If the stability margin is not satisfied, it is necessary to directly readjust the gains through trial and error methods for improvement. To improve this, an additional compensator and an optimization constraint were added to the control gain optimization procedure. In addition, the degree of handling quality satisfaction with the optimization result was reevaluated, and additional control evaluation criteria for the convergence of the time response and the steady state error that the flight performance requirement set as the optimization constraint cannot be reflected, and the results are described.

A Digital Phase-locked Loop design based on Minimum Variance Finite Impulse Response Filter with Optimal Horizon Size (최적의 측정값 구간의 길이를 갖는 최소 공분산 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • You, Sung-Hyun;Pae, Dong-Sung;Choi, Hyun-Duck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.591-598
    • /
    • 2021
  • The digital phase-locked loops(DPLL) is a circuit used for phase synchronization and has been generally used in various fields such as communication and circuit fields. State estimators are used to design digital phase-locked loops, and infinite impulse response state estimators such as the well-known Kalman filter have been used. In general, the performance of the infinite impulse response state estimator-based digital phase-locked loop is excellent, but a sudden performance degradation may occur in unexpected situations such as inaccuracy of initial value, model error, and disturbance. In this paper, we propose a minimum variance finite impulse response filter with optimal horizon for designing a new digital phase-locked loop. A numerical method is introduced to obtain the measured value interval length, which is an important parameter of the proposed finite impulse response filter, and to obtain a gain, the covariance matrix of the error is set as a cost function, and a linear matrix inequality is used to minimize it. In order to verify the superiority and robustness of the proposed digital phase-locked loop, a simulation was performed for comparison and analysis with the existing method in a situation where noise information was inaccurate.

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.