• 제목/요약/키워드: stars-white dwarfs

검색결과 14건 처리시간 0.018초

Pulsar binaries and GW detection

  • Kim, Chunglee
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • Pulsar binaries in tight orbits are considered to emit strong gravitational waves (GWs) during the last stage of their coalescences. They form a subset of compact binary mergers, which consists of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). One of the most famous example of 'merging' pulsar binaries is the Hulse-Taylor pulsar (PSR B1913+16) discovered in 1974 by Russell Hulse and Joseph Taylor. About ten NS-NS and several tens of NS-WD binaries are known in our Galaxy. Merging binaries are rare and only a few NS-NS and NS-WD have been discovered to date. A pulsar with a black hole companion is also theoretically expected, but there is yet no detection. Within several years, direct detections of GWs from compact binary mergers will be made by laser interferometers. This will pave a way to study physics of compact binaries that cannot be reached by electromagnetic waves (EM). Pulsar binaries are of particular interest as we can use both EM and GW to probe these systems. In this talk, we present a brief overview on the Galactic pulsar populations and discuss their implications for GW detection.

  • PDF

THE FAINT END OF THE DISK LUMINOSITY FUNCTION

  • Lee, Sang-Gak;Hyun, Jong-June;Yu, Yong-Sun
    • 천문학회지
    • /
    • 제22권2호
    • /
    • pp.101-111
    • /
    • 1989
  • We have analysed the proper motion data of LHS catalog, to derive the faint end of the luminosity function more precise than ever before, by mean absolute method, and by making use of the reudced proper motion diagram. It is found that the relations between the mean absolute magnitude and the reduced proper motion for main sequence stars, subdwarfs, and white dwarfs are so different that the proper application of an appropriate relation to each group is much more important. The derived luminosity function shows the broad maximum peak from $M_B{\sim}14$ to $M_B{\sim}17$ and declines after $M_B{\sim}17$ up to $M_B{\sim}22$.

  • PDF

THE CLASSIFICATION AND PHYSICS OF SUPERNOVAE

  • Wheeler, J. Craig
    • 천문학논총
    • /
    • 제8권1호
    • /
    • pp.169-177
    • /
    • 1993
  • Observed spectra of supernovae allow the empirical classification of supernovae into two basic categories, Type I with little or no evidence of hydrogen, and Type II with obvious evidence for hydrogen. The broad class of Type I can be subdivided depending on whether helium or silicon and other intermediate mass elements is observed. Understanding the physical processes that underlie these classifications---the progenitor evolution. the explosion mechanism, and end products---requires calculation of radiative transfer and model spectra. While most Type II occur in evolved massive stars that undergo core collapse. some may span the dividing line between degenerate and non-degenerate carbon burning and involve both core collapse and thermonuclear explosion. Type Ia are still most plausibly explained as thermonuclear explosions in carbon/oxygen white dwarfs in binary systems. Type Ib reveal helium atmospheres and are probably the result of core collapse in the helium core of a massive star that has lost its hydrogen envelope to a binary companion or to a wind. Type Ic supernovae are probably related to Type Ib but have also lost their helium envelope to reveal a mantle rich in oxygen.

  • PDF

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.