• Title/Summary/Keyword: stars: metallicity

Search Result 99, Processing Time 0.024 seconds

Metallicity Distribution of the Galactic Halo from SDSS Photometry

  • An, Deok-Keun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.144.1-144.1
    • /
    • 2011
  • We explore the metallicity distribution of the Galactic halo based on the SDSS ugriz photometry. We use empirically calibrated sets of stellar isochrones to determine distances and metallicities of individual main-sequence stars in the halo. At heliocentric distances greater than 5 kpc, we find that the in situ photometric metallicity distribution reveals chemically divided dual halo components, which supports arguments from earlier studies based on the medium resolution spectroscopy. Our finding provides an unbiased estimate of relative fractions of each of these stellar components in the Galactic halo.

  • PDF

METALLICITY DETERMINATION FOR A GLOBULAR CLUSTER BY SPECTRAL INDICES

  • LEE SANG-GAK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.157-170
    • /
    • 1996
  • In order to determine the metallicity of a globuar cluster, M3,by using the spectral indices, a kind of index grid has been establshed by stars in globular clusters, M3, M15, M71 and old open cluster, NGC 188. The indices were measured from the medium resolution spectra of about $2{\AA}$. The summed indices were used to determine metallicity in order to increase signals. It is found that the core depth index is measured more accurately and leads result more accurate than the pseudo-equivalent width index. This method can be further improved by including many more calibration globular clusters of various metallicity to make finer grids. By this method, the metallicity of M3 is determined as $[Fe/H] = -1.46\pm0.15$.

  • PDF

Medium Resolution Spectroscopy of Red Giant Stars in Omega Centauri

  • Jung, Jae In;An, Deokkeun;Lee, Young Sun;Rey, Soo-Chang;Lee, Jae-Woo;Lee, Young-Wook;Rhee, Jaehyon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2016
  • We present chemical abundances for about 800 red giant stars in Omega Centauri, based on medium-resolution spectra obtained using Hydra multi-fiber spectrograph at the CTIO 4-m telescope. Our sample covers 14.2 < V < 15.0, and is almost unbiased against colors (and therefore metallicity). The metallicity distribution function (MDF) constructed from our data has an overall shape and local peaks that approximately match those for brighter giant stars in Johnson et al.. We also find that more metal-rich cluster members are more concentrated in the cluster center, which is consistent with previous studies. On the other hand, we find no clear evidence for such a spatial dependence with respect to alpha elemental abundance ([${\alpha}/Fe$]).

  • PDF

Dependence of Halo Properties on Galactic Potentials

  • Kim, Youngkwang;Lee, Young Sun;Beers, Timothy C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2017
  • We present the dependence of halo properties on two different Galactic potentials: the $St{\ddot{a}}ckel$ potential and the Milky Way-like potential known as "Galpy". Making use of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12), we find that the shape of the metallicity distribution and rotation velocity distribution abruptly changes at 15 kpc of $Z_{max}$ (the maximum distance of stellar orbit above or below the Galactic plane) and 32 kpc of $r_{max}$ (the maximum distance of an orbit from the Galactic center) in the $St{\ddot{a}}ckel$, which indicates that the transition from the inner to outer halo occurs at those distances. When adopting the $St{\ddot{a}}ckel$ potential, stars with $Z_{max}$ > 15 kpc show a retrograde motion of $V_{\phi}=-60km\;s^{-1}$, while stars with $r_{max}$ > 32 kpc show $V_{\phi}=-150km\;s^{-1}$. If we impose $V_{\phi}$ < $-150km\;s^{-1}$ to the stars with $Z_{max}$> 15 kpc or $r_{max}$> 32, we obtain the peak of the metallicity distribution at [Fe/H] = -1.9 and -1.7 respectively. However, there is the transition of the metallicity distribution at $Z_{max}=25kpc$, whereas there is no noticeable retrograde motion in the Galpy. The reason for this is that stars with high retrograde motion in the $St{\ddot{a}}ckel$ potential are unbound and stars with low rotation velocity reach to larger region of $Z_{max}$ and $r_{max}$ due to shallower potential in the Galpy. These results prove that as the adopted Galactic potential can affect the interpretation of the halo properties, it is required to have a more realistic Galactic potential for the thorough understanding of the dichotomy of the Galactic halo.

  • PDF

THE H$\beta$ INDEX AND THE AGES OF OLD STELLAR SYSTEMS

  • Yoon, Seok-Jin;Lee, Hyun-Chul;Lee, Young-Wook
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 1998
  • The $H{\beta}$ and some metal line indices, such as Mg2, Fe52 of single-age and single-metallicity populations are computed based on the method of evolutionary population synthesis, with careful consideration of the variation of the horizontal-branch morphology with metallicity and age. We find (a) that while metal lines are little af-fected, the $H{\beta}$ index is severely enhanced (up to 30%)by the presence of the blue horizontal-branch stars, frustrating the current age-estimations from this index with out careful consideration of these stars, and (b) that there is a systematic trend in the sense that the globular clusters in giant elliptical galaxies appear to be older than those in our Galaxy by several billion years. We also calculate these indices for the stellar populations with a metallicity spread, by adopting metallicity distribution functions predicted by chemical evolution models. The comparison of the models with the observed indices of the central regions of the early-type galaxies yields the results (a) that the ages of the giant elliptical galaxies would be older than the previous estimations by several billion years, and (b) that there is a considerable age spread among elliptical galaxies, in the sense that the giant elliptical galaxies are older than small ones.

  • PDF

The first of its kind metallicity map of the Large Magellanic Cloud

  • Choudhury, Samyaday;Subramaniam, Annapurni;Cole, Andrew A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.30.1-30.1
    • /
    • 2016
  • We have estimated a metallicity map of the Large Magellanic Cloud (LMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind, high-spatial resolution map of metallicity up to a radius of $4^{\circ}-5^{\circ}$, derived using large area photometric data and calibrated using spectroscopic data of Red Giant Branch (RGB) stars. The RGB is identified in the V, (V - I) colour- magnitude diagrams of small subregions of varying sizes in both data sets. The slope of the RGB is used as an indicator of the mean metallicity of a subregion, and it is calibrated to metallicity using spectroscopic data for field and cluster red giants in selected subregions. The mean metallicity of the LMC is found to be [Fe/H] = -0.37 dex (${\sigma}[Fe/H]=0.12$) from MCPS data, and [Fe/H] = -0.39 dex (${\sigma}[Fe/H]=0.10$) from OGLE III data. The bar is found to have an uniform and higher metallicity compared to the disk, and is indicative of an active bar in the past. Both the data sets suggest a shallow radial metallicity gradient up to a radius of 4 kpc ($-0.049{\pm}0.002$ dex kpc-1 to $-0.066{\pm}0.006$ dex kpc-1). This metallicity gradient of the LMC disk, though shallow, resembles the gradient seen in spiral galaxies, and similar to that found in our Galaxy.

  • PDF

ECLIPSING BINARY STARS IN THE MAGELLANIC CLOUDS

  • TOBIN WILLIAM
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.89-91
    • /
    • 1996
  • Within the next few years eclipsing binaries should yield primary distance measurements for the Magellanic Clouds as well as provide tests of theoretical low-metallicity stellar models.

  • PDF

On the interpretation of color bimodality of extra-galactic globular clusters

  • Kim, Hak-Sub;Sohn, SangmoTony;Chung, Chul;Lee, Sang-Yoon;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.27.1-27.1
    • /
    • 2010
  • Globular cluster (GC) systems in most galaxies, particularly in ellipticals, show bimodal color distributions. Because broadband colors trace metallicity at old ages, this phenomenon has been commonly interpreted as bimodal metallicity distributions, implying the presence of two sub-populations in the globular cluster system within a galaxy. However, a new explanation has recently been proposed, in which the non-linear nature of color-metallicity relations induced by horizontal-branch stars can produce bimodal color distributions even from unimodal metallicity distributions. In this study, we put these two explanations to the test on the origin of color bimodality, using multi-band (U,B,V and I) photometry of globular clusters in NGC 1399, the central giant elliptical galaxy in Fornax galaxy cluster. We find significant changes in the morphology of color distributions when using different colors. The observation is also well reproduced by the Monte Carlo realization of GC color when a unimodal metallicity distribution and the theoretical non-linear color-metallicity relations are assumed. We discuss the implications regarding theories on galaxy formation and evolution.

  • PDF

2MASS Near-Infrared Photometry of the Old Open Cluster Trumpler 5

  • Kim, Sang-Chul;Kyeong, Jae-Mann;Sung, Eon-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • Using the JHK 2MASS near-infrared data, we present photometry results for the old open cluster (OC) Trumpler 5 (Tr 5). From the near-infrared color-magnitude diagrams of Tr 5, we have located the position of the red giant clump (RGC) stars, and used the mean magnitude of the RGC stars in K-band to estimate the distance to Tr 5. From the Padova isochrone fittings, we have estimated the reddening, metallicity, and age of Tr 5. These parameters generally agree well with those obtained from the previous studies on Tr 5 and confirms that this cluster is an old OC with metallicity being metal-poorer than solar abundance, located in the anti-Galactic center region.

  • PDF