• Title/Summary/Keyword: stars: individual (V1719 Cyg)

Search Result 2, Processing Time 0.017 seconds

PHOTOMETRIC PROPERTIES AND METALLICITY OF V1719 CYGNI

  • Kim, Chul-Hee;Yushchenko, A.V.
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • We collect 24 times of light maxima data from sources in the literature, unpublished data and open databases, and investigate the variations of the observed and calculated (O-C) values for light maxima of V1719 Cyg. We found no evidence of the variations in the (O-C) values. We estimate the effective temperature and surface gravity using both the Kurucz and MARCS/SSG grids for different metallicity values [A/H]=0.0 and +0.5 for V1719 Cyg. It is confirmed that the temperature is almost the same, but, in the case of surface gravity, the MARCS/SSG grid gives the value closest to that obtained from the period-gravity relation derived by using the pulsation-evolution theory. We obtain two spectra of V1719 Cyg from spectroscopic observation which permitted us to find the effective temperature and the surface gravity of the star directly. We estimate the metallicity and it is found that the abundance of iron is equal to the solar value.

The Chemical Composition of V1719 Cyg: δ Scuti Type Star without the Accretion of Interstellar Matter

  • Yushchenko, Alexander V.;Kim, Chulhee;Jeong, Yeuncheol;Doikov, Dmytry N.;Yushchenko, Volodymyr A.;Khrapatyi, Sergii V.;Demessinova, Aizat
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.157-163
    • /
    • 2020
  • High resolution spectroscopic observation of V1719 Cyg were made at 1.8 meter telescope of Bohyunsan Optical Astronomy observatory in Korea. Spectral resolving power was R=45,000, signal to noise ratio S/N>100. The abundances of 28 chemical elements from carbon to dysprosium were found with the spectrum synthesis method. The abundances of oxygen, titanium, vanadium and elements with Z>30 are overabundant by 0.2-0.9 dex with respect to the solar values. Correlations of derived abundances with condensation temperatures and second ionization potentials of these elements are discussed. The possible influence of accretion from interstellar environment is not so strong as for ρ Pup and other stars with similar temperatures. The signs of accretion are absent. The comparison of chemical composition with solar system r- & s-process abundance patterns shows the enhancement of the photosphere by s-process elements.