• Title/Summary/Keyword: stars: flare

Search Result 9, Processing Time 0.029 seconds

Statistical Properties of Flare Variability, Energy, and Frequency in Low-Mass Stars

  • Chang, Seo-Won;Byun, Yong-Ik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.29.2-29.2
    • /
    • 2011
  • Although stellar flares have a long history of observations, there are few concrete understanding about underlying physical processes and meaningful correlations with other stellar properties. Most of previous observations dealt with only a small number of sample stars, and therefore not sufficient to support generalized statistical studies. Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2,500 M-dwarf stars and successfully identified 606 flare events from 422 stars. This is a rare attempt to estimate true flare rates and properties among many stars of the same age and mass group. For each flare, we considered both observational and physical parameters including flare shape, duration before and after the peak, baseline magnitude before and after the peak, peak magnitudes, total energy and peak energy, etc. We find significant correlations between some of key parameters over a wide range of energy ($Er=10^{32}{\sim}10^{36}ergs$). For instance, regardless of stellar luminosities, the energy power spectrum of flares can be approximated by a power law (${\beta}=0.83-0.97$). This suggests that flares follow similar physical mechanisms for atmospheric heating and cooling among these low-mass stars. From this MMT data set, we derived an average flaring rate of $0.019 hr^{-1}$ among flare stars and $0.003 hr^{-1}$ for all M-dwarf candidates. We will report the details of our analysis and discuss physical implications.

  • PDF

Numerical Simulation of a Protostar Flare Loop between the Core and Disk

  • ISOBE HIROAKI;YOKOYAMA TAKAAKI;SHIBATA KAZUNARI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.337-339
    • /
    • 2001
  • One-dimensional hydrodynamic modeling of a protostellar flare loop is presented. The model consists of thermally isolated loop connecting the central core and the accretion disk. We found that the conductive heat flux of a flare heated the accretion disk up to coronal temperature and consequently the disk is evaporated and disappeard. This effect may explain the ovserved feature of the repeated flare from the young stellar object YLW 15.

  • PDF

Flares and Starspots : Direct Evidences for Stellar Activities bin Low-mass Stars

  • Chang, Seo-Won;Byun, Yong-Ik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2010
  • The optical lightcurves of flare events can be regarded as a direct indicator about the existence of magnetic activity in low-mass stars. Stellar flares are generated by magnetodynamic processes in the stellar interiors as on the Sun and indicate that the locally intensified active regions still exist on the photosphere. However previous photometric observations are limited to a few selected active objects because of their faintness and randomness of the flare occurrence. Based on dedicated deep (r~23), long-term (24 night) time-series monitoring of the open cluster M37 from MMT 6.5m transit survey program, we searched for flare-like transient phenomena in the 3,052 M-dwarf lightcurves with relatively high-temporal resolution (30s-90s). In order to collect all statistical significant events, we applied the change-point analysis with filtering algorithm using local statistics. We found a number of flares from 412 M-dwarf stars that are probable cluster members. Nearly half of them have periodic brightness variations with a near or distorted sinusoidal shape. With a small exception of binary cases, most of these variations appear to reflect the presence of large starspots resulting in rotational brightness modulations. We will discuss the relationship among magnetic activity indicators and dependence on spectral type.

  • PDF

Flare and Starspot-induced Variabilities of Red Dwarf Stars in the Open Cluster M37: Photometric Study on Magnetic Activity

  • Chang, Seo-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.83.2-83.2
    • /
    • 2014
  • Flare and rotational variabilities induced by stellar activity are important for studying the effect of magnetic fields on the evolution of red dwarf stars. The level and frequency of magnetic activity in these stars have a different aspect at every moment of the observations due to the effect of age-rotation relation. The use of both tracers is thus essential to have a relatively homogeneous set of stellar activity data for statistical studies. The archival light curves and imaging data of the open cluster M37 taken by MMT 6.5m telescope were used for this work. In order to achieve much more accurate photometric precisions and also to make the most efficient use of the data, the entire imaging database were re-analyzed with our new time-series photometry technique and carefully calibration procedures. Based on the new light curves, we study, for the first time, a variety of aspects of those two variabilities in red dwarfs and their relation to magnetic activity. In this talk, we present all observational evidences that support the idea that the strength of magnetic activity is closely connected with the rotation rate of a star and its evolutionary status (age-activity-rotation paradigm). In conclusion, we suggest future directions to improve our understanding of stellar activity in cool stars with photometric time-series data.

  • PDF

VARIATIONS OF THE SOLAR FLARE ENERGY SPECTRUM OVER TWO ACTIVITY CYCLES (1972 - 1995)

  • KASINSKY V. V.;SOTNIKOVA R. T.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.315-316
    • /
    • 1996
  • Based on X-ray (1-8 ${\AA}$) flux data for 1972-1995 the integral spectra of solar flare energy were computed. It has been shown that the spectral index $\beta$ of the integral energy spectrum (IES) vanes systematically with the 11-year cycle phase. The interval of $\beta$-variations (0.47 <$\beta$<1) is characteristic of UV-Cet stars. The maximum energy of the X-ray flares does not exceed $10^{32}$ erg.

  • PDF

SPECTRA OF CHROMOSPHERICALLY ACTIVE STARS (채층 활동이 강한 별들의 분광선)

  • KANG YOUNG WOON;KIM HOIL;LEE WOO BAIK;OH KYU DONG
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.93-102
    • /
    • 2000
  • We have reviewed the magnetic activity in close binaries. Solar like magnetic activity indicators such as photometric spots, chromo spheric emission, coronal X-ray and radio emission, and flare activity are commonplace in many cool stars with convective envelopes. Using the UV spectra we confirmed the strength of stellar activity increases with more rapid rotation and later spectral types which corresponds to the increasing depth of the star's convective envelope. Apart from very young stellar objects such as T Tauri stars, the stars with the highest levels of activity are close binary systems composed of cool stars, i.e., the chromospherically active binaries such as RS CVn, BY Dra, W UMa and related systems. The IUE low and high dispersion spectra of V711 Tau, VW Cep and SW Lac are used for ultraviolet photometry and for a variation study of chromospheric activity. Evidence of chromospherically activity is indicated by the intensity variation of the Mg II emission line with orbital phase.

  • PDF

LOOKING ON FLARES WITH CCD

  • KURTANIDZE OMAR M.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.325-326
    • /
    • 1996
  • We present the Programme of Monitoring of Flare Stars in the Orion aggregate by. CCD based. Photometer mounted at the Newtonian focus of 70/98/210-cm meniscus telescope through glass imaging quality C1 filter (3900${\AA}$/800${\AA}$) with a time resolution of 0.5-1.0 min.

  • PDF

MOLECULAR LINE OBSERVATION TOWARD POLARIS FLARE

  • Chi Seung-Youp;Park Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • In an attempt to investigate star formation activity and statistical properties of clumps of high Galactic latitude clouds (HLCs), we mapped the Polaris Flare region, PF121.3+25.5, in $^{12}CO\;and\;^{13}CO$ J = 1 - 0 using SRAO 6-m telescope and also observed its 12 $^{13}CO$ peak positions in CS J = 2 - 1 with TRAO 14-m telescope. $^{13}CO$ integrated intensity map shows clearly its clumpy structure and the locations of clumps well agree with $^{12}CO$morphology. CS line is not detected toward the 12 $^{13}CO$ peak positions, so we can conclude there are no dense $(\sim10^4\;cm^{-3})$ in this region. We decomposed 105 clumps from $^{13}CO$ map using GAUSSCLUMPS algorithm. The mass of clumps ranges from $7.8\;M_{\odot}\;to\;7.4{\times}10^{-2}\;M_{\odot}$ with a total mass of $66.4\;M_{\odot}$ The mass spectrum follows a power law, dN/dM ${\propto}\;M^{-\alpha}$ with a power index of ${\alpha}=1.91{\pm}0.13$. The virial masses of clumps are in the range of $10{\sim}100M_{LTE}$ and so these clumps are considered to be gravitationally unbound.