• Title/Summary/Keyword: starfish Ca

Search Result 7, Processing Time 0.089 seconds

Bioavailability of Starfish Calcium as a Novel Calcium Source (칼슘급원으로서의 불가사리 칼슘의 체내이용성)

  • Lee Yeon Sook;Moon Ji Young;Jang Soo Jung
    • The Korean Journal of Community Living Science
    • /
    • v.16 no.1
    • /
    • pp.135-148
    • /
    • 2005
  • This study was conducted to investigate the bioavailability of calcium derived from starfish as a new calcium source. Four-week old Sprague-Dawley female rats were divided 6 groups. The rats were received experimental diets containing two kinds of Ca sources, CaCO₃ or starfish, and three levels of Ca, low (0.1 %), medium (0.5%) and high (1.0%), respectively, for 6 weeks. The parameters which related to Ca bioavailability were measured : Serum Ca concentration, Alkaline phosphatase(ALP) and GOT activities ; tissue Ca contents, bone dimension and Ca, P, Mg contents; Ca retention and apparent absorption. Starfish Ca-fed rats did not show any difference from CaCO₃-fed rats in terms of growth, food intake and FER. Serum Ca, ALP and GOT activities as well as tissue Ca contents were not different between CaCO₃- and starfish Ca-fed groups. Although dimension of femur and lumbar was not different between CaCO₃- and starfish Ca-fed rats, ash content was high in starfish Ca-fed rats. Ca and P contents of femur and lumbar were not different between both groups. Starfish Ca-fed groups showed higher Mg contents than CaCO₃-fed groups in both femur and lumbar. Ca absorption rate and retention rate were significantly higher in starfish Ca-fed rats. These results indicate that Ca derived starfish did not show any negative effect on growth and Ca metabolism of rats compared to calcium carbonate. Starfish Ca can be recommended as a good Ca source on the basis of higher Ca absorption and bioavailability.

  • PDF

Bioavailability and Feed Value of Starfish with Various Treatments (처리방법에 따른 불가사리의 이용율 및 사료적 가치)

  • Choe, H.S.;Park, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • To evaluate the feed value of starfish, antimicrobial effects of its extract, nutrients contents, concentration of amino acids and its bioavailability were tested. Steaming and ether processes were applied to obtain the extract from starfish for antimicrobial effects examination. The starfish was dried at $60^{\circ}C$ for 3 days before grinding for processing and fermentation. Ground starfish(GS), extruded starfish(ES), fermented starfish(EFS) were added with enzyme and without enzyme(Non enzyme fermented starfish : NEFS). Then the nutrient composition and bioavailability of those were analyzed. The extract from starfish showed no inhibition of the growth of lactobacillus and pathogenic bacteria. Protein content showed significantly higher 62.86% and 52.82%, respectively in EFS and NEFS than GS and EGS(p<0.05). The Ca content of GS, EGS, EFS and NEFS was 17.26%, 18.26%, 5.37% and 8.55%, respectively. It was low in EFS and NEFS due to measure the Ca content after fermentation. Total amino acid was 17.17 mg/g, 20.28 mg/g, 36.30 mg/g and 29.96 mg/g in GS, EGS, EFS and NEFS, respectively. The ratio of total amino acid to protein tended to show the similar tendency as total amino acid. Both total amino acid and its ratio to protein were increased by the fermentation. Bioavailability of the protein and Ca showed more 80% in EFS and NEFS. The nutrients availability of EFS were significantly higher in laying hens than other treatments. The results of these experiments indicate that starfish would be applied as a feed ingredients if it was properly treated.

  • PDF

Effects of Supplemental Agents Enhancing Calcium Absorption on Bioavailability of Starfish Calcium in Rats (흰쥐에서 불가사리칼슘의 체내이용성에 대한 칼슘흡수증진물질의 첨가 효과)

  • Moon, Ji-Young;Jang, Soo-Jung;Park, Mi-Na;Park, Hee-Yeon;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.832-839
    • /
    • 2007
  • This study was conducted to investigate the bioavailability of starfish calcium with substances enhancing calcium absorption. Three week-old young female rats (Sprague-Barley) were divided into 5 groups according to calcium sources and testing agents; calcium carbonate (C), starfish calcium (S), starfish calcium + casein phosphopeptide (S-CPP), starfish calcium+citrate-malate (S-CM), starfish calcium+isoflavone (S-ISO), and were fed experimental diets containing AIN-93G based Ca (0.35% w/w) diet with CPP, CM and ISO for 6 weeks. Blood, femur, urine and feces samples were collected. There was no significant difference among groups in terms of growth and food intake. Serum Ca concentrations were normal in all 5 groups. Serum P concentrations and ALP activities were not significantly different among groups. Ca absorption and retention were significantly increased both in S-CPP and S-CM groups compared to C group (p<0.05). p absorption was significantly higher in S-CPP group than in other groups. While the amount of soluble Ca of intestinal contents did not differ among groups, the amount of insoluble Ca was significantly lower in S-CPP, S-CM and S-ISO groups than in C and S groups. However, the weight, Ca and P concentrations of femur were not significantly different among groups. These results suggest that the addition of CPP and citrate-malate were more effective for enhancing the bioavailability, intestinal absorption and solubility of starfish calcium.

Physiochemical Characteristics of Calcium Supplement Manufactured using Starfish (불가사리를 이용하여 제조한 칼슘보충제의 이화학적 특성)

  • Park, Hee-Yeon;Lee, Jung Im;Nam, Ki-Ho;Jang, Mi-Soon
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.727-734
    • /
    • 2012
  • For developing calcium supplement from the harmful marine organism starfish, the physiochemical property of the powdered starfish skeletal plate and the hydrolysis condition of the starfish digestive enzyme were studied. The optimal hydrolysis condition of the starfish digestive enzymes was at $55^{\circ}C$ for 12 h. The bulk densities of the powdered starfish skeletal plates of Asterias amurensis and Asterina pectinifera were $1.1{\pm}0.0$ and $1.2{\pm}0.0g/cm^3$, respectively. As for the median size, the values were 10.738 and $11.799{\mu}m$, respectively. According to the added concentration of sodium polyacrylate, the dispersibility rate of the powdered starfish skeletal plate was shown to be 6h at 0.0%, 3 days at 0.1%, 20 days at 0.2%, and until 30 days at 0.4%. The elementary composition of the powdered starfish skeletal plates from A. amurensis and A. pectinifera mainly consisted of calcium, and it formed 98.95 and 98.52% of the powdered starfish skeletal plates, respectively. The results of the X-ray diffraction (XRD) analysis showed that they were present in the form of $CaCO_3$. Based on these results, it is suggested that starfish skeletal plate can be utilized as a functional material for a calcium supplement.

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera) (화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가)

  • Jang, Ha Rin;Moon, Deok Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

Effect of Homemade Liquid Fertigation on Growth and Fruit Characteristics of Cherry Tomatoes (자가제조 액비 관주 처리가 방울토마토의 생장과 과실특성에 미치는 영향)

  • Jung, Ji-Sik;Jung, Seok-Kyu;Choi, Hyun-Sug
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The study was compared for growth and yield of cherry tomato (Lycopersicon esculentum var. cerasiforme) crops as affected by various homemade liquid fertilizer (LF), commonly applied in the environmentally friendly farmhouses. LF treatment included UT (untreatment, water), OC (oil cake), BF (bone+fish meal), FA (fish amino meal), SO (sesame oil meal), and SF (starfish). Seasonal pH and EC in SO- and SF-LF rapidly decreased at 30 days after the storage, which were the highest EC of 0.6 - 0.8 dS/m, followed by BF-LF with 0.4 dS/m EC. T-N concentration in LF was the highest on the SF (0.0062%), followed by SO (0.0059%) and BF materials (0.0030%), which were all the great for the K concentration in the LF. P and Ca concentrations were the highest on the FA-LF, with the highest Mg concentration observed on the vegetable SO-LF. Soil EC was the highest on the SF-LF plots of 0.74 dS/m, with no significant differences between the treatments observed on the macro-nutrient concentrations in the soil and leaf. Leaf dry weight, leaf temperature, stem diameter, and plant height were investigated at once per 15 days. UT-LF reduced the leaf dry weight at all the measurement time while the plant height was low at an initial measurement but increased and similar to the other homemade LF treatments at a later measurement. Fruit yield and average fruit weight were the lowest on the UT-LF plots at 75 days after fertigation. Fruit diameter was increased by the BF-LF and SF-LF, with the highest fruit soluble solid contents and fruit coloring observed on the FA-LF. BF-LF maintained high fruit firmness.

Effect of Homemade Liquid Fertilizers on Chemical Property and Microbial Activity of Soil and Cucumber Growth (자가제조 액비처리가 토양 화학성과 미생물상 및 오이의 생장에 미치는 영향)

  • Jung, Ji-Sik;Jung, Seok-Kyu;Choi, Hyun-Sug
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.15-25
    • /
    • 2019
  • The study was conducted to compare the chemical properties and microbial activity of soil and the crop productivity by applying homemade liquid fertilizers (LF) used in leading cucumber farms as well as to evaluate the eco-friendly LFs to substitute for a chemical fertilizer. Three homemade LFs, EM, starfish, and native microbes, and a chemical LF were regularly fertigated per three days during the growing season. Chemical LF contained the highest pH, EC (electrical conductivity), and concentrations of T-N, $P_2O_5$, K, Ca, and Mg, while the lowest EC level was observed for EM LF. Soil EC was the highest to the 3.0 dS/m for chemical LF-plots, with lowering soil pH, OM (organic matter), and Mg concentration. Soil chemical properties mostly increased in native microbes LF-plots. However, soil microbial properties were not significantly different among the LF treatment plots. OTU (operational taxonomic units), richness estimator, and diversity index of bacteria and fungi increased in the chemical LF and EM LF based on the pyrosequencing analysis. SPAD and PS II values on the treated-cucumber leaves were seasonally decreased from 32 to 60 days after transplanting, with the rapid decline observed at 45 days after transplanting. Number of leaves and crop height increased in the treatments with EM and native microbes LF. LF treated-cucumber crops were not significantly different for total fresh weight and fruit yield.