• 제목/요약/키워드: starch physicochemical properties

검색결과 319건 처리시간 0.025초

Effect of Low Level of Starch Acetylation on Physicochemical Properties of Potato Starch

  • Wickramasinghe, Hetti Arachchige Mangalika;Yamamoto, Kazuo;Yamauchi, Hiroaki;Noda, Takahiro
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.118-123
    • /
    • 2009
  • In order to find out the effect of low level of starch acetylation on physicochemical properties of potato starch, amylose content, digestibility of raw and gelatinized starch, thermal properties, pasting properties, and the swelling power of native and acetylated potato starches were measured. The amylose content was significantly lower in acetylated starch than in their counterpart native starches. Though a tendency in the decrease in digestibility of raw starch was observed with starch acetylation, acetylation did not alter the proportion of readily digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) of both raw and gelatinized potato starches. No clear increase in the swelling power was observed, however, the peak and onset gelatinization temperatures and the enthalpy required for starch gelatinization decreased with starch acetylation. Peak and breakdown viscosities were reduced due to acetylation of potato starch while final viscosity and set back were increased.

분질고구마 대유미 전분의 이화학적 및 겔 특성 (Physicochemical and Gel Properties of Starch Purified from Mealy Sweet Potato, Daeyumi)

  • 정온빛;윤희나;노준희;김욱;신말식
    • 한국식품조리과학회지
    • /
    • 제32권4호
    • /
    • pp.524-530
    • /
    • 2016
  • Purpose: The properties of starch and starch gel prepared from a newly inbred sweet potato, Daeyumi were compared to the properties of starch and starch gel prepared from Sinyulmi which is a well known mealy type sweet potato. Methods: The starch was isolated by using the alkaline steeping method. Physicochemical, pasting, and thermal properties, and crystallinity were measured. The texture properties of starch gel (10%, w/w) were examined. Results: The amylose contents of Daeyumi and Sinyulmi starches were 25.57% and 22.59%, respectively. The initial pasting temperature of Daeyumi starch was significantly higher than that of Sinyulmi starch (p<0.05), but other paste viscosities were not different. The peak and conclusion temperatures of Daeyumi starch were higher than those of Sinyulmi starch by differential scanning calorimetry. The shape of Daeyumi starch gel was more clear and rigid than the shape of Sinyulmi starch gel. The surface and the upper side of Daeyumi starch gel were smoother than the surface and the upper side of Sinyulmi starch gel. Hardness and gumminess were higher in Daeyumi starch gel than in Sinyulmi starch gel. The crystallinity types of Daeyumi and Sinyulmi starches were $C_b$ and A types, respectively, but starch gels showed an amorphous type. Conclusion: Therefore, it is suggested that Daeyumi starch would have better physicochemical properties and higher quality of starch gel than Sinyulmi starch.

Physicochemical Properties of Enzymatically Modified Maize Starch Using 4-${\alpha}$-Glucanotransferase

  • Park, Jin-Hee;Park, Kwan-Hwa;Jane, Jay-Iin
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.902-909
    • /
    • 2007
  • Granular maize starch was treated with Thermus scotoductus 4-${\alpha}$-glucanotransferase (${\alpha}$-GTase), and its physicochemical properties were determined. The gelatinization and pasting temperatures of ${\alpha}$-GTase-modified starch were decreased by higher enzyme concentrations. ${\alpha}$-GTase treatment lowered the peak, setback, and [mal viscosity of the starch. At a higher level of enzyme treatment, the melting peak of the amylose-lipid complex was undetectable on the DSC thermogram. Also, ${\alpha}$-GTase-modified starch showed a slower retrogradation rate. The enzyme treatment changed the dynamic rheological properties of the starch, leading to decreases in its elastic (G') and viscous (G") moduli. ${\alpha}$-GTase-modified starch showed more liquid-like characteristics, whereas normal maize starch was more elastic and solid-like. Gel permeation chromatography of modified starch showed that amylose was degraded, and a low molecular-weight fraction with $M_w$ of $1.1{\times}10^5$ was produced. Branch chain-length (BCL) distribution of modified starch showed increases in BCL (DP>20), which could result from the glucans degraded from amylose molecules transferred to the branch chains of amylopectin by inter-/intra-molecular transglycosylation of ${\alpha}$-GTase. These new physicochemical functionalities of the modified starch produced by ${\alpha}$-GTase treatment are applicable to starch-based products in various industries.

고압균질처리가 전분필름의 물성에 미치는 영향 (Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films)

  • 강은정;이재권
    • 산업식품공학
    • /
    • 제15권1호
    • /
    • pp.70-74
    • /
    • 2011
  • 전분필름의 물성에 미치는 고압균질 처리의 영향을 검토한 결과, 고압균질처리 옥수수전분필름은 산화전분필름과 유사한 투명도를 가지며, 용해도와 산소투과억제력의 증가와 함께 인장강도가 다소 높아지는 것을 확인하였다. 이러한 고압균질처리 옥수수전분필름의 물성변화는 고압균질기의 고압과 전단력에 의해 호화전분입자가 완전히 소실되고 전분의 용해도 증가와 보다 균일한 분산상이 형성되기 때문으로 판단되었다. 일반적인 호화과정을 통해 형성되는 전분필름의 구조는 연속상의 아밀로오스에 팽윤된 접분입자가 분산되어 있는 network 형태에서 형성된다. 반면 고압균질처리의 경우, 호화전분입자의 붕괴로 아밀로펙틴이 연속상을 이루고 여기에 아밀로오스가 분산상으로 존재하는 새로운 분산계(dispersed system)가 형성되어, 기존 호화 방법으로 제조한 필름과 다른 물성을 나타내는 것으로 판단되었다.

옥테닐호박산나트륨 전분의 이화학적 특성 (Physicochemical Properties of Octenylsuccinated Corn Starch)

  • 정만곤;임번삼
    • 한국식품위생안전성학회지
    • /
    • 제14권1호
    • /
    • pp.84-89
    • /
    • 1999
  • Octenylscuccinated corn starches prepared by reaction of corn starch with 1-octenylsuccinic anhydride(OSAn) and their degree of substitution (DS), reaction efficiency(RE), residual octenylsuccinic acid (OSA), and physicochemical properties were compared with those of the native corn starch. DS increased with increase of OSAn and RE was much nearly the same regardless of increased of OSAn. The content of residual of residual OSA was significantly lower than that of regulation of food additives. And as washing frequency of dispersion of the reactant was increased, the content of residual OSA of octenylsuccinated starch was decreased. Raid Visco-Analyzer initial pasting temperature and setback of octenylsuccinated starches decreased whereas peak viscosity and breakdown increased. When DS of octenylsuccinated starches increased, temperature of initial gelatinization of octenylscuccinated starches drastically decreased. The octenylsuccinated starches also formed clearer pastes. The solubility was much nearly the same regardless of increase of DS at 7$0^{\circ}C$ but the swelling power increased 1.2~1.7 times higher than that of native corn starch at 7$0^{\circ}C$. The water binding capacity of octenylsuccinated starches also decreased.

  • PDF

동결 건조된 옥수수 전분 스펀지 매트릭스의 이화학적 특성 (Physicochemical Properties of Freeze-dried Corn Starch Sponge Matrix)

  • 한경훈;김도희;송관영;이계희;윤택준;양성범;이석원
    • 한국식품영양학회지
    • /
    • 제23권3호
    • /
    • pp.419-427
    • /
    • 2010
  • The focus of the current study was to investigate the physicochemical properties of a corn starch-sponge matrix prepared at a low concentration below gel forming by freeze-drying. The effect of variables(starch concentration, heating temperature, and heating hold time) on the physicochemical properties of the samples was analyzed by response-surface methodology. Regression models on the properties of samples such as hardness, springiness, and water solubility index(WSI) showed high correlation coefficients(r>0.95) and significant F values, but regression models for the other properties(swelling power, apparent viscosity, reducing sugar content, and digestibility) showed them to have relatively low significance. Sample hardness of sample showed the highest value at condition of $90^{\circ}C$ and 5%, whereas springiness was at a maximum at $130^{\circ}C$ and 5%. Also, at 1% of starch concentration, mechanical properties were greatly decreased as the relative humidity increased, compared with the 3% and 5%, especially in the hardness of samples. The WSI showed an increasing trend with heating temperature regardless of starch concentration. Overall, the physicochemical properties of freeze-dried corn starch-sponge matrix were influenced much more by starch concentration and heating temperature than by heating hold time. The results of this study show that the basic properties of freeze-dried corn starch-sponge matrix can be used for the specific food applications or as a functional material for its stability.

Studies for Physicochemical and In Vitro Digestibility Characteristics of Flour and Starch from Chickpea (Cicer arietinum L.)

  • Chung, Hyun-Jung
    • Preventive Nutrition and Food Science
    • /
    • 제16권4호
    • /
    • pp.339-347
    • /
    • 2011
  • Flour and isolated starch from chickpea (desi type, 328S-8) were evaluated for their in vitro digestibility and physicochemical properties. The protein content, total starch content and apparent amylose content of chickpea flour and isolated starch were 22.2% and 0.6%, 45.8% and 91.5%, and 11.7% and 35.4%, respectively. Chickpea starch granules had an oval to round shape with a smooth surface. The X-ray diffraction pattern of chickpea starch was of the C-type and relative crystallinity was 24.6%. Chickpea starch had only a single endothermic transition (13.3 J/g) in the DSC thermogram, whereas chickpea flour showed two separate endothermic transitions corresponding to starch gelatinization (5.1 J/g) and disruption of the amylose-lipid complex (0.7 J/g). The chickpea flour had a significantly lower pasting viscosity without breakdown due to low starch content and interference of other components. The chickpea starch exhibited significant high setback in the viscogram. The average branch chain length, proportion of short branch chain (DP 6~12), and long branch chains (DP${\geq}$37) of isolated chickpea starch were 20.1, 20.9% and 9.2%, respectively. The rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) contents of chickpea flour and starch were 9.9% and 21.5%, 28.7% and 57.7%, and 7.1% and 9.3%, respectively. The expected glycemic index (eGI) of chickpea flour (39.5), based on the hydrolysis index, was substantially lower than that of isolated chickpea starch (69.2).

인삼다당류의 이화학적 특성에 관한 연구 -인삼저장가공중 전분의 이화학적 특성변화- (Physicochemical Properties of Korean Ginseng (Panax ginseng, C.A. Meyer) Root Polysaccharides. -Change of physicochemical properties of the starch during storage and heat treatment-)

  • 조재호;오성기
    • Journal of Ginseng Research
    • /
    • 제9권2호
    • /
    • pp.270-284
    • /
    • 1985
  • In order to investigate the change of physicochemical properties of ginseng root starch during storage and heat treatment, the roots were stored for 15 days at 5 $^{\circ}C$, 15 $^{\circ}C$, 3$0^{\circ}C$ and 45$^{\circ}C$, and heated for 15 hours at 6$0^{\circ}C$, 7$0^{\circ}C$, 8$0^{\circ}C$, 9$0^{\circ}C$, respectively. The starch content was decreased from about 40% to 23-26% and sucrose content was increased from 4% to 12-16% during storage for 15 days at 5-45$^{\circ}C$. Maltose, which was not detected in fresh samples, was increased up to 8.5% during storage or heat treatment. Granular size of the starch was decreased and some of the granules were broken during storage. Amylose content in the starch was decreased from 33% to 20%, and blue value and alkali number of the starch were increased slightly, and solubility and swelling power of the starch were decreased during storage. 3 The higher storage temperature and the longer storage time, the starch was more susceptible to gelatinize, and the viscosity of the starch was lowered with the susceptibility of gelatinization. The susceptibility of degradation of the starch by the amylase was increased and amylolytic activities in ginseng root were, also, increased during storage.

  • PDF

녹말 나노 입자의 연구 현황 (Current research trends on starch nanoparticles (SNPs))

  • 오선민;백무열
    • 식품과학과 산업
    • /
    • 제52권4호
    • /
    • pp.346-357
    • /
    • 2019
  • In recent years, starch nanoparticles (SNPs) have been received much attention due to their unique characteristics different from native starch. Also, SNPs have economic and environmental advantages because they are prepared from starch, a cheap and safe natural polymer. It can be used in various industrial applications such as food additives, drug carriers, etc. SNPs have been prepared using different methods and their physiochemical, functional properties and possible industrial applications have been reported. Based on these studies, SNPs are expected to be the promising food materials and expand their utilization in many industries in the future. This review covered the overall researches on SNPs, including preparation, physicochemical and functional properties, and discussed their current and future applications including resistant starch materials.

자색고구마 전분의 이화학적 특성 (Physiochemical Properties of Purple-Fleshed Sweet Potato Starch)

  • 박양균;최차란;임종환
    • 한국식품영양과학회지
    • /
    • 제29권1호
    • /
    • pp.1-5
    • /
    • 2000
  • Physicochemical properties and gelatinization patterns of purple-fleshed sweet potato starch were studied. Shape of starch granule was round and polygonal, X-ray diffraction pattern was Ca-type. Amylose content was 14.4% which was lower than that of other sweet potato starch. Water binding capacity was 82.54%, swelling power and solubility at 8$0^{\circ}C$ were 27.94% and 15.35%, respectively. Initial temperature of gelatinization was 72$^{\circ}C$ using Brabender/Visco/Amylograph, consistency and setback were lower than those of other sweet potato starch. The peak temperature and enthalpy determined by DSC were 68.1$^{\circ}C$, 1.24cal/g, respectively. The transmittance of starch dispersions in alkaline solutions increased with NaOH concentration up to 0.17N, and then changed slowly at 0.19N or above. The apparent viscosities were similar to the transmittance of starch dispersions in alkaline solutions, but drastically increased above 0.21N.

  • PDF