• Title/Summary/Keyword: star-like

Search Result 200, Processing Time 0.026 seconds

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G.;KOCHUKHOV O.;SHULYAK D.;LEE B.-C.;GALAZUTDINOV G.;KIM K.-M.;HAN I.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.283-287
    • /
    • 2005
  • The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.

Morphological and Genetic Stock Identification of Todarodes pacificus in Korean Waters (한국 주변해역에 서식하는 살오징어(Todarodes pacificus)의 형태 및 유전학적 계군분석)

  • Kim, Jeong-Yun;Yoon, Moon-Geun;Moon, Chang-Ho;Kang, Chang-Keun;Choi, Kwang Ho;Lee, Chung Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.131-141
    • /
    • 2013
  • Stock identification of Todarodes pacificus collected in the East Sea, Yellow Sea and East China Sea during the period from September to December in 2011 was analyzed by morphometric characters and mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) gene nucleotide variations. Frequency distributions of mantle length was analyzed by morphological method with measuring size of T. pacificus. Then each stock was estimated to confirm their maturation for mean mantle length comparing with mean mature mantle length 20-22 cm. According to morphologic stock identification, it is estimated that the northern part of East Sea is categorized as summer stock and the rest parts, including mid /southern part of the East Sea, northern part of the East China Sea and northern part of the West Sea were autumn stock. For genetic analysis, a total 49 haplotypes were defined by 33 variable nucleotide sites. From the extensive haplotype diversity, limited nucleotide diversity and star-like shape of haplotype network, T. pacificus appears to have undergone rapid population expansion from an ancestral population with a small effective population size. Although pair-wise Fst estimates which represent genetic difference among groups were low, there are relatively remarkable difference of Fst between middle and southern part of the East Sea. Although middle part of the East Sea and southern part of the East Sea were situated at the East Sea, genetically separated groups were appeared.

Preliminary Design of the G-CLEF Flexure Control Camera

  • Oh, Jae Sok;Park, Chan;Park, Sung-Joon;Kim, Kang-Min;Chun, Moo-Young;Yu, Young Sam;Szentgyorgyi, Andrew;Norton, Timothy;Podgorski, William;Evans, Ian;Mueller, Mark;Uomoto, Alan;Crane, Jeffrey;Hare, Tyson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.1-53.1
    • /
    • 2015
  • The GMT-Consortium Large Earth Finder(G-CLEF) is one of the first light instruments at the Giant Magellan Telescope. The international consortium consists of five astronomical institutes including the Center for Astrophysics, the Observatories of Carnegie Institute, the University of Catolica in Chile, the University of Chicago, and Korea Astronomy and Space Science Institute, led by CfA. The extremely precise radial velocity capability is one of the principal instrumental feature of G-CLEF. The RV goal is 10 cm/s capable of detecting an Earth-like planet around a Sun-like host star. This high precision wavelength calibration stability requires a set of significantly tight optomechanical tolerances in the mechanical design of the Flexure Control Camera system. KASI is in charge of the Flexure Control Camera and the Calibration Light System for the G-CLEF spectrograph. In this presentation, we introduce the preliminary design and analysis results of the G-CLEF Flexure Control Camera.

  • PDF

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.

Spectral Bio-signature Simulation of full 3-D Earth with Multi-layer Atmospheric Model and Sea Ice Coverage Variation

  • Ryu, Dong-Ok;Seong, Se-Hyun;Lee, Jae-Min;Hong, Jin-Suk;Jeong, Soo-Min;Jeong, Yu-Kyeong;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.48.1-48.1
    • /
    • 2009
  • In recent years, many candidates for extra-solar planet have been discovered from various measurement techniques. Fueled by such discoveries, new space missions for direct detection of earth-like planets have been proposed and actively studied. TPF instrument is a fair example of such scientific endeavors. One of the many technical problems that space missions such as TPF would need to solve is deconvolution of the collapsed (i.e. spatially and temporally) spectral signal arriving at the detector surface and the deconvolution computation may fall into a local minimum solution, instead of the global minimum solution, in the optimization process, yielding mis-interpretation of the spectral signal from the potential earth-like planets. To this extend, observational and theoretical understanding on the spectral bio-signal from the Earth serves as the key reference datum for the accurate interpretation of the planetary bio-signatures from other star systems. In this study, we present ray tracing computational model for the on-going simulation study on the Earth bio-signatures. A multi-layered atmospheric model and sea ice variation model were added to the existing target Earth model and a hypothetical space instrument (called AmonRa) observed the spectral bio-signals of the model Earth from the L1 halo orbit. The resulting spectrums of the Earth show well known "red-edge" spectrums as well as key molecular absorption lines important to harbor life forms. The model details, computational process and the resulting bio-signatures are presented together with implications to the future study direction.

  • PDF

Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives (아민첨가제를 사용하여 합성된 ZnO의 입자형상 및 광학적 특성)

  • Hyeon, Hye-Hyeon;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Zinc oxide of hexagonal wurzite, is known as n-type semiconductor. It has a wide band gap energy of 3.37 eV and large exciton binding energy of 60 meV. It can be widely applied to gas sensors, laser diodes, dye-sensitized solar cells and degradation of dye waste. The use of microwave hydrothermal synthesis brings a rapid reaction rate, high yield, and energy saving. Amine additives control the different particle shapes because of the chelate effect and formation of hydroxide ion. In this study, zinc nitrate hexahydrate was used as zinc precursor. In addition, ethanolamine, ethylenediamine, diethylenetriamine, and hexamethylenetetramine are used as shape control agent. The pH value was controlled as 11 by NaOH. The shapes of zinc oxide are star-like, rod, flower-like, and circular cone. In order to analyze physical, chemical, and optical properties of ZnO with diverse amine additives, we used XRD, SEM, EDS, FT-IR, UV-Vis spectroscopy, and PL spectroscopy.

A deep and High-resolution Study of Ultra-diffuse Galaxies in Distant Massive Galaxy Clusters

  • Lee, Jeong Hwan;Kang, Jisu;Jang, In Sung;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.38.4-38.4
    • /
    • 2019
  • Ultra-diffuse galaxies (UDGs) are intriguing in the sense that they are much larger than dwarf galaxies but have much lower surface brightness than normal galaxies. To date, UDGs have been found only in the local universe. Taking advantage of deep and high-resolution HST images, we search for UDGs in massive galaxy clusters in the distant universe. In this work, we present our search results of UDGs in three massive clusters of the Hubble Frontier Fields: Abell 2744 (z=0.308), Abell S1063 (z=0.348), and Abell 370 (z=0.375). These clusters are the most distant and massive among the host systems of known UDGs. The color-magnitude diagrams of these clusters show that UDGs are mainly located in the faint end of the red sequence. This means that most UDGs in these clusters consist of old stars. Interestingly, we found a few blue UDGs, which implies that they had recent star formation. The radial number densities of UDGs clearly decrease in the central region of the clusters in contrast to those of bright galaxies which keep rising. This implies that a large fraction of UDGs in the central region were tidally disrupted. These features are consistent with those of UDGs in nearby galaxy clusters. We estimate the total number of UDGs (N(UDG)) in each cluster. The abundance of UDGs shows a tight relation with the virial masses (M_200) of thier host systems: M_200 \propto N(UDG)^(1.01+/-0.05). This slope is found to be very close to one, indicating that efficiency of UDGs does not significantly depend on the host environments. Furthermore, estimation of dynamical masses of UDGs indicates that most UDGs have dwarf-like masses (M_200 < 10^11 M_Sun), but a few UDGs have $L{\ast}$-like masses (M_200 > 10^11 M_Sun). In summary, UDGs in distant massive clusters are found to be similar to those in the local universe.

  • PDF

How Supernovae Ejecta Is Transported In A Galaxy: DependenceOn Hydrodynamic Schemes In Numerical Simulations

  • Shin, Eun-jin;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • We studied the metal-distribution of isolated Milky-way mass galaxy using various hydrodynamic solvers and investigated the difference of the result between AMR and SPH codes. In particle-based codes, physical quantities like mass or metallicity defined in each particle are conserved unless being injected explicitly by the effect of the supernova, whereas in the Eulerian codes the diffusion is simply accomplished by hydro-equation. Therefore, without including explicit physics of diffusion on the SPH- codes, the metal mixing in the galaxy or CGM only can be accomplished by the direct motion of the particles, however, the standard-SPH codes depress the instability of the turbulent fluid mixing. In this work, we simulated under common initial conditions, common gas-physics like cooling-heating models, and star-formation feedback using ENZO(AMR) GIZMO and GADGET-2 codes. We additionally included a metal-diffusion algorithm on the SPH-codes, which follows the subgrid-turbulent mixing model investigated by Shen et al. (2010) and compared the effect of the metal-outflow on the halo region of the galaxy in different hydro-solvers. We also found that for the implementation of the diffusion scheme in the SPH-codes, the existence of a sufficient number of the gas-particles, which is the carrier of the metals, is necessary. So we tested a new initial condition for proper implementation of the diffusion scheme on the SPH simulations. By comparing the metal-contamination of the circumgalactic medium with different hydrodynamics models, we quantify the diffusion strength of AMR codes using diffusion parameterization of the SPH codes and also suggest the calibration solutions in the different behavior of codes in metal-outflow.

  • PDF

NORTH ECLIPTIC POLE WIDE SURVEY

  • Lee, Hyung Mok;Kim, Seong Jin;NEP-Wide Team, NEP-Wide Team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.129-134
    • /
    • 2012
  • The North Ecliptic Pole (NEP) Wide survey covered about 5.4 $deg^2$, a nearly circular area centered on the NEP, using nine passbands of InfraRed Camera (IRC). We present the photometric properties of the data sets, and the nature of the sources detected in this field. The number of detected sources varied according to the filter band: with about 109,000 sources in the NIR, about 20,000 sources in the MIR-S, and about 16,000 sources seen in the MIR-L channel. The $5{\sigma}$ detection limits are about 21 mag in the NIR and 19.5 - 18.5 mag in the MIR bands in terms of the AB magnitude. 50% completeness levels are about 19.8 mag at $3{\mu}m$, 18.6 mag at $9{\mu}m$, and 18 mag at $18{\mu}m$ band (in AB magnitude), respectively. In order to validate the detected sources, all of them are confirmed by matching tests with those in other bands. The 'star-like' sources, defined by the high stellarity and magnitude cut from the optical ancillary data, appear statistically to have a high probability of being stars. The nature of the various types of extragalactic sources in this field are discussed using the color-color diagrams of the NIR and MIR bands with the redshift tracks of galaxies providing useful guidelines.

Multi-Dimensional Hybrid Design and Construction of Skyscraper Cluster -Innovative Engineering of Raffles City Chongqing-

  • Wang, Aaron J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.261-269
    • /
    • 2017
  • Designed by star architect of Moshes Safdie, Raffles City Chongqing includes a total of 6 mega high-rise towers 250 to 380 m tall, a sky conservatory, a 5-storey high shopping mall and a 3-storey basement car parking. Located at the confluence of the Yangtze and Jailing Rivers, the site for the project is imbued with a significance that is immediately symbolic, both as a sign of Chongqing's important past and as a vivid indicator of the city's thriving present and future. The design for the project to be situated at this gateway takes as its governing idea the image of powerful sails upon the water. The outer facades of the project's eight towers - the transparent surfaces that will face the water to the north - are meant to recall a fleet of ancient Chinese ships, with their huge rectangles of white canvas filled by the wind. This is a $1.13million\;m^2$ mega scale integrated project of office, retail, hotel, service residence and high-end residence with the transportation hub and traffic circulation at various levels of the project. This paper presents the multi-dimensional hybrid design, engineering and construction of this mega scale project. The innovations and the cutting-edge technology used in this project are introduced and discussed benchmarking the design and construction of the skyscraper cluster in a major city like Chongqing of China.