• Title/Summary/Keyword: star-forming galaxies

Search Result 149, Processing Time 0.027 seconds

Cosmological Origin of Satellites around Isolated Dwarf Galaxies

  • Chun, Kyungwon;Shin, Jihye;Smith, Rory;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2019
  • We trace the cosmological origin of satellites around isolated dwarf galaxies using a very high resolution (12 pc/h) cosmological hydrodynamic zoom simulation. To realistically describe the formation and evolution of small-mass stellar satellites, our model includes a full baryonic physics treatment. We find that the mini-halos form objects resembling dwarf galaxies. The majority of their star forming gas is accreted after reionization, thus the survival of a mini-halo's gas to reionization is not an important factor. Instead, the key factor seems to be the ability for a mini-halo to cool its recently accreted gas, which is more efficient in more massive halos. Although the host galaxy is only a dwarf galaxy itself, we find that ram pressure is an efficient means by which accreted mini-halos lose their gas content, both by interacting with hot halo gas but also in direct collisions with the gas disk of the host. The satellites are also disrupted by the tidal forces near the center of the host galaxy. Compared to the disrupted satellites, surviving satellites are relatively more massive, but tend to infall later into the host galaxy, thus reducing the time they are subjected to destructive environmental mechanisms and dynamical friction.

  • PDF

On the origin of escape fractions of ionizing radiation from star-forming galaxies at high redshift

  • Yoo, Taehwa;Kimm, Taysun;Rosdahl, Joakim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2019
  • The physical origin of low escape fractions of ionizing radiation derived from Lyman-break galaxies (LBGs) at z ~ 3 - 4 is a puzzle in the theory of reionization. We perform idealized disk galaxy simulations to investigate how galactic properties, such as metallicity and gas mass, affect the escape of Lyman continuum (LyC) photons using radiation-hydrodynamic code RAMSES-RT, with strong stellar feedback. We find that the luminosity-weighted escape fraction from a metal-poor (Z=0.002) galaxy embedded in a halo of mass Mh ~ 1011 M is 〈f3Desc〉 ~ 8%. However, when the gas metallicity is increased to Z=0.02, the escape fraction is significantly reduced to 〈f3Desc〉 ~ 1%, as young stars are enshrouded by their birth clouds for a longer period of time. On the other hand, increasing the gas mass by a factor of 5 leads to 〈f3Desc〉 ~ 4%, as LyC photons are only moderately absorbed by the thicker disk. Our experiments seem to suggest that high metallicity is primarily responsible for the low escape fractions observed from LBGs, supporting the scenario in which the escape fraction has a negative correlation with halo mass. Indeed, our simulated galaxy with the typical metallicity of LBGs (Z=0.006) shows the relative escape fraction of 8%, consistent with recent observations of galaxies with M1500 = -20.

  • PDF

Gravitational Instability of Rotating Isothermal Rings

  • Moon, Sanghyuk;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2016
  • Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent eld method, we first construct their equilibrium sequences specified by two parameters: ${\alpha}$ corresponding to the thermal energy relative to gravitational potential energy, and $R_B$ measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller ${\alpha}$, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency ${\Omega}$ and central density ${\rho}_c$. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when ${\Omega}$ exceeds the critical value. The critical angular frequency is found to be almost constant at $0.7(G{\rho}_c)^{1/2}$ for ${\alpha}$ > 0.01 and increases rapidly for smaller ${\alpha}$. We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  • PDF

HOW DO MASSIVE STARS FORM? INFALL & OUTFLOW IN DENSE CORES IN THE MILKY WAY

  • AKHTER, SHAILA.;CUNNINGHAM, MARIA R.;HARVEY-SMITH, LISA;JONES, PAUL A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.99-101
    • /
    • 2015
  • Massive stars are some of the most influential objects in the Universe, shaping the evolution of galaxies, creating chemical elements and hence shaping the evolution of the Universe. However, the processes by which they form and how they shape their environment during their birth processes are not well understood. We use $NH_3$ data from "The $H_2O$ Southern Galactic Plane Survey" (HOPS) survey to define the positions of dense cores/clumps of gas in the southern Galactic plane that are likely to form stars. Then, using data from "The Millimetre Astronomy Legacy Team 90 GHz" (MALT90) survey, we search for the presence of infall and outflow associated with these cores. We subsequently use the "3D Molecular Line Radiative Transfer Code" (MOLLIE) to constrain properties of the infall and outflow, such as velocity and mass flow. The aim of the project is to determine how common infall and outflow are in star forming cores, and therefore to provide valuable constraints on the timescales and physical process involved in massive star formation. Preliminary results are presented here.

ULTRAVIOLET COLOR - COLOR RELATION OF EARLY-TYPE GALAXIES AT 0.05

  • Lee, Chang-Hui;Jeong, Hyeon-Jin;O, Gyu-Seok;Jeong, Cheol;Lee, Jun-Hyeop;Kim, Sang-Cheol;Gyeong, Jae-Man
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2012
  • We present the ultraviolet (UV) color-color relation of early-type galaxies (ETGs) in the nearby universe (0.05 < z < 0.12) to investigate the properties of hot stellar populations responsible for the UV excess (UVX). The initial sample of ETGs is selected by the spectroscopic redshift and the morphology parameter from the SDSS DR 7, and then cross-matched with the GALEX far-UV (FUV) and near-UV (NUV) GR6 data. The cross-matched ETG sample is further classified by their emission line characteristics in the optical spectra into quiescent, star-forming, and active galactic nucleus categories. Contaminations from early-type spiral galaxies, mergers, and morphologically disturbed galaxies are removed by visual inspection. By drawing the FUV-NUV (as a measure of UV spectral shape) versus FUV-r (as a measure of UVX strength) diagram for the final sample of -3700 quiescent ETGs, we find that the "old and dead" ETGs consist of a well-defined sequence in UV colors, the "UV red sequence," so that the stronger UVX galaxies should have a harder UV spectral shape systematically. However, the observed UV spectral slope is too steep to be reproduced by the canonical stellar population models in which the UV flux is mainly controlled by age or metallicity parameters. Moreover, 2 mag of color spreads both in FUV-NUV and FUV-r appear to be ubiquitous among any subsets in distance or luminosity. This implies that the UVX in ETGs could be driven by yet another parameter which might be even more influential than age or metallicity.

  • PDF

Radiative Transfer Model of Dust Attenuation Curves in Clumpy, Galactic Environments

  • Seon, Kwang-il;Draine, Bruce T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2016
  • The attenuation of starlight by dust in galactic environments is investigated through models of radiative transfer in a spherical, clumpy interstellar medium (ISM). We show that the attenuation curves are primarily determined by the wavelength dependence of absorption rather than by the underlying extinction (absorption+scattering) curve; the observationally derived attenuation curves cannot constrain a unique extinction curve unless the absorption or scattering efficiency is specified. Attenuation curves consistent with the Calzetti curve are found by assuming the silicate-carbonaceous dust model for the Milky Way (MW), but with the $2175{\AA}$ bump suppressed or absent. The discrepancy between our results and previous work that claimed the Small Magellanic Cloud dust to be the origin of the Calzetti curve is ascribed to the difference in adopted albedos; we use the theoretically calculated albedos whereas the previous ones adopted empirically derived albedos from observations of reflection nebulae. It is found that the model attenuation curves calculated with the MW dust are well represented by a modified Calzetti curve with a varying slope and UV bump strength. The strong correlation between the slope and UV bump strength, as found in star-forming galaxies at 0.5 < z < 2.0, is well reproduced if the abundance of the UV bump carriers is assumed to be 30-40% of that of the MW-dust; radiative transfer effects lead to shallower attenuation curves with weaker UV bumps as the ISM is more clumpy and dustier. We also argue that some of local starburst galaxies have a UV bump in their attenuation curves, albeit very weak.

  • PDF

Spectroscopic observation of the massive high-z (z=1.48) galaxy cluster SPT-CL J2040-4451 using Gemini Multi-Object Spectrographs

  • Kim, Jinhyub;Jee, Myungkook J.;Kim, Seojin F.;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • Mass measurement of high-redshift galaxy clusters with high accuracy is important in constraining cosmological parameters. Extremely massive clusters at high redshift may impose a serious tension with the current ΛCDM paradigm. SPT-CL J2040-4451 at z=1.48 is considered one such case given its redshift and mass estimate inferred from the SZ data. The system has also been confirmed to be indeed massive from a recent weak-lensing (WL) analysis. Comparison of the WL mass with the spectroscopic result may provide invaluable information on the dynamical stage of the system. However, the existing spectroscopic coverage of the cluster is extremely poor; only 6 blue star-forming galaxies have been found within the virial radius, which results in highly inflated and biased velocity dispersion. In this work, we present a spectroscopic analysis of the member candidates using Gemini Multi-Object Spectrographs (GMOS) observation in Gemini South. The observation was designed to find early-type member galaxies within the virial radius and to obtain reliable velocity dispersion. We explain our selection scheme and preliminary results of the spectra. We also compare the dynamical mass estimate inferred from the velocity dispersion with the WL mass.

  • PDF

Star-formation Properties of High-redshift (z~1) Galaxy Clusters Connected to the Large-scale Structure

  • Lee, Seong-Kook;Im, Myungshin;Hyun, Minhee;Park, Bomi;Kim, Jae-woo;Kim, Dohyung;Kim, Yongjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2017
  • At local, majority of galaxies in the dense environment, such as galaxy cluster, are red and quiescent with little star-formation (SF) activity. However, a different picture emerges as we go to high redshift: (1) there exist non-negligible fraction of galaxies still forming stars actively even in dense environment, and (2) there is a significant cluster-by-cluster variation in the SF properties, such as quiescent galaxy fraction. In this presentation, we show the results of our study about the variation of quiescent galaxy fraction among high-redshift (z~1) galaxy clusters, based on the multi-object spectroscopic (MOS) observation with IMACS on the Magellan telescope. Our main result is that galaxy clusters which are connected with significant large-scale structure (LSS), well beyond the cluster scale, are more active in their SF activity, i.e., the quiescent galaxy fraction for these clusters is lower compared to the clusters which are detached from LSS.

  • PDF

Conceptual Design Study of NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Moon, Bongkon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2013
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is being developed by KASI. The NISS will perform the imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, starforming regions and so on. The off-axis reflecting telescope with a wide field of view (2 deg. ${\times}$ 2 deg.) will be operated in the wavelength range from 0.95 to $3.8{\mu}m$. In order to reduce thermal noise, a telescope and a HgCdTe infrared sensor will be cooled down to 200K and 80K, respectively. To evade a stray light outside a field of view and use limited space efficiently, the NISS adopted the off-axis reflective optical system. The primary and secondary mirrors, optomechanical part and mechanical structure were designed to use the same material. It will lessen the degradation of optical performance due to a thermal variation. The purpose of NISS is the observation of cosmic near-infrared background in the wide wavelength range as well as the detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions. It will give us less biased information on the star formation history. In addition, we will demonstrate the space technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

Black Hole Activities of Red Active Galactic Nuclei

  • Kim, Dohyeong;Im, Myungshin;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2015
  • We investigate black hole (BH) activities of 16 red active galactic nuclei (AGNs). The 16 red AGNs selected by red colors in optical through near-infrared (NIR) and radio detection. In order to derive BH activities of the red AGNs, we use $P{\beta}$ line with NIR spectra obtained by the SpeX on the IRTF. The $P{\beta}$ line suffers from dust extinction less than UV/optical BH mass estimators. We compared Eddington ratios of the red AGNs and "normal" AGNs, and the Eddington ratios of red AGNs are significantly higher than those of "normal" AGNs. The result is consistent with a scenario that red AGNs are the intermediate population between star forming galaxies and "normal" AGNs, and BHs of red AGNs are very active and grow rapidly in such a stage.

  • PDF