• Title/Summary/Keyword: star trackers

Search Result 16, Processing Time 0.023 seconds

Improvement of Earth Gravity Field Maps after Pre-processing Upgrade of the GRACE Satellite's Star Trackers

  • Ko, Ung-Dai;Wang, Furun;Eanes, Richard J.
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • Earth's gravity field recovery was improved after the pre-processing upgrade of the Gravity Recovery And Climate Experiments (GRACE) satellite's star trackers. The star tracker measurements were filtered with a tighter low-pass filtering of 0.025Hz cutoff frequency, instead of a nominal filtering of 0.1Hz cutoff frequency. In addition, a jump removal algorithm was applied to remove discontinuities, due to direct Sun and/or Moon interventions, in the star tracker measurements. During the K-Band Ranging (KBR) calibration maneuvers, large attitude variations could be detected concurrently by both of the star trackers and the accelerometer. The misalignment angles of star trackers between the true frame and the normal frame could be determined by comparing measurements from these sensors. In this paper, new Earth' gravity field maps were obtained using above improvement. Based on comparisons to nominal Earth's gravity field maps, the new Earth's gravity field maps were found better than the nominal ones. Among the applied methods, the misalignment calibration of the star trackers had a major impact on the improvement of the new Earth's gravity field maps.

Analysis of Initial Activation and Checkout Results of Attitude Sensor Star Trackers for a LEO Satellite (저궤도 위성의 자세센서 별 추적기 초기 운용 분석)

  • Yim, Jo Ryeong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2012
  • This technical paper describes the analysis results of telemetry data for the initial activation of star trackers for an agile high accuracy low earth orbit satellite. The satellite was recently launched and is in the Launch and Early Operation Phases. It uses two SED36 star trackers manufactured by SODERN. The star tracker is separated by three parts, an optical head, an electronics box, and a baffle with maintaining optical head base plate temperature 20 degC in order to achieve the better performance in low frequency error. This paper presents the initial activation status, requirements and performance, anomaly occurrence, and noise equivalent angle performance analysis during the mission mode by processing the telemetry data.

Star Visibility Analysis for a Low Earth Orbit Satellite

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.28.2-28.2
    • /
    • 2008
  • Recently, star sensors have been successfully used as main attitude sensors for attitude control in many satellites. This research presents the star visibility analysis for star trackers and the goal of this analysis is to make sure that the star tracker implementation is suitable to the mission profile and scenario and satisfies the requirement of attitude orbit control system. As a main optical attitude sensor imaging stars, accomodations of a star tracker should be optimized in order to improve the probability of the usage by avoiding the blinding (the unavailability) by the Sun and the Earth. For the analysis, a statistical approach and a time simulation approach are used. The statistical approach is based on the generation of numerous cases, to derive relevant statistics about Earth and Sun proximity probabilites for different lines of sight. The time simulation approach is performed for one orbit to check the statistical result and to refine the statistical result and accomodations of star trackers. In order to perform simulations first of all, an orbit and specific mission profiles of a satellite are set, next the earth proximity probability and the sun proximity probability are calculated by considering the attitude maneuvers and the geometry of the orbit, and then finally the unavailability positions are estimated. As a result, the optimized accomodations of two star trackers are suggested for the low earth orbit satellite.

  • PDF

Attitude determination for three-axis stabilized satellite

  • Kim, Jinho;Lew, Changmo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper presents the on-board attitude determination algorithm for LEO (Low Earth Orbit) three-axis stabilized spacecraft. Two advanced star trackers and a three-axis Inertial Reference Unit (IRU) are assumed to be attitude sensors. The gyro in the IRU provides a direct measurement of the attitude rates. However, the attitude estimation error increases with time due to the gyro drift and noise. An update filter with measurements of star trackers and/or sun sensor is designed to update these gyro drift bias and to compensate the attitude error. Kalman Filter is adapted for the on-board update filter algorithm. Simulation results will be presented to investigate the attitude pointing performance.

  • PDF

A Study on the Ground S/W Simulator for the Test of a Star Tracker (별센서 시험을 위한 지상 S/W 시뮬레이터 연구)

  • Lee, Hyeon Jae;Bang, Hyo Chung;Jeong, Dae Won;Seok, Byeong Seok;Kim, Hak Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.117-123
    • /
    • 2003
  • One of the most important elements in satellite attitude control is sensor technology. Generally, inertial sensors introduce drift and noise which cause continuous errors. Absolute reference is needed to eliminate the problem of the inertial sensors. Star trackers are used primarily for such a purpose. There has been relatively less research effort or ground feasibility test experience on star trackers in the domestic side despite the importance of the associated technologies. In this paper, we re-introduce the basic concept of a star tracker and present the S/W simulator for the star tracker. The star simulator may be used ground test of a star tracker for the basic functioning test or the whole spacecraft test with the star tracker assembled.

SELECTION OF DESIGN PARAMETERS IN OPTICAL SYSTEM OF STAR TRACKER FOR A SATELLITE (위성용 STAR TRACKER 광학계의 설계요소 선정)

  • Nah, Ja-Kyung;Kim, Yong-Ha;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.273-284
    • /
    • 1999
  • In order to develop star trackers for a satellite in our country we studies selection procedure of optical parameters. For logical selection of the optical parameters, we simulated the entire processes in which star lights imaged on a CCD sensor were read into and processed in an associated electronics. The simulation resulted in relations between star's magnitude and achievable pointing accuracy, from which we derived optimal optical parameters to satisfy a required pointing accuracy of a star tracker. The selected optical parameters were used in an optical system design of a star tracker with a pointing accuracy of 10 arcsec.

  • PDF

Overview of Star Tracker Technology and Its Development Trends (별추적기의 기술개요와 개발동향)

  • Ju, Gwang-Hyeok;Lee, Sang-Ryool
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.300-308
    • /
    • 2010
  • In order to accelerate the evolution of faster, better, cheaper spacecraft, it is evident that greatly enhanced general-purpose attitude determination methods are needed Currently, star tracker sensors based on charge coupled devices (CCD) or active pixel sensors(APS) enable one to obtain the best spacecraft attitude estimation among the existing sensors for attitude determination. In this paper, basic principles of star tracker technology are explained including major issues arising in design and development of star tracker. Also, an historical overview and worldwide survey associated with various star trackers from star scanner through microelectromechanical system(MEMS)-based star tracker is offered.

Orbital Parameters Modeling of High Resolution Satellite Imagery for Mapping Applications (매핑을 위한 고해상 위성영상의 궤도요소 모델링)

  • 유환희;성재열;김동규;진경혁
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.405-414
    • /
    • 2000
  • A new generation of commercial satellites like IKONOS, SPOT-5 and OrbView-3,4 will have improved features, especially an higher geometric resolution with a better dynamic radiometric range. In addition high precision orbital position and attitude data will be provided by the on-board GPS receivers, IMU(Inertial Measurement Units) and star trackers. This additional information allows for reducing the number of ground control points. Furthermore this information enables direct georeferencing of imagery without ground control points. In our work mathematical models for calculating the satellite orbital parameters of SPOT-3 and KOMPSAT-1 were developed and can be easily extended to process images from other high resolution imaging systems as they become available.

  • PDF

On-Orbit AOCS Sensor Calibration of Spacecraft (인공위성의 궤도상에서 자세제어계 센서 보정)

  • Yong, Gi-Ryeok;Lee, Seon-Ho;O, Si-Hwan;Bang, Hyo-Chung;Lee, Seung-U
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.90-101
    • /
    • 2006
  • In this paper, the calibration parameters of the gyros and star hackers are estimated by using an on-orbit AOCS sensor calibration algorithm. The calibration algorithm was implemented by Kalman filter. In order to estimate gyro calibration parameters, the calibration algorithm requires calibration maneuver and it was analyzed whether the star trackers are protected by Sun, Moon and Earth or not. Also the star tracker calibration algorithm used the camera image information. This kinds of camera image information simulated ground control point and orbit information. The estimated accuracy of star tracker calibration parameters depends on camera image information.

  • PDF

Sensor Alignment Calibration for PrecisionAttitude Determination of Spacecrafts

  • Lee, Il-Hyoung;Ryoo, Chang-Kyung;Bang, Hyo-choong;Tahk, Min-Jea;Lee, Sang-Ryool
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • A new alignment calibration method of attitude sensors for the precisionattitude determination of a spacecraft based on the extended Kalman filter is proposed.The proposed method is divided into two steps connected in series: the gyro and thestar tracker calibration. For gyro calibration, alignment errors and scale factor errorsare estimated during the calibration maneuver under the assumption of a perfect startracker. Estimation of the alignment errors of the star trackers and compensation ofthe gyro calibration errors are then performed using the measurements includingpayload information. Performance of the proposed method are demonstrated bynumerical simulations.