• 제목/요약/키워드: star abundance

검색결과 70건 처리시간 0.024초

The AGN-Starburst Connection traced by the Nitrogen Abundance

  • Matsuoka, Kenta;Nagao, Tohru;Marconi, Alessandro;Maiolino, Roberto;Park, Daeseong;Woo, Jong-Hak;Shin, Jaejin;Ikeda, Hiroyuki;Taniguchi, Yoshiaki
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.40.2-40.2
    • /
    • 2014
  • The connection between the active galactic nuclei (AGNs) and star formation activity is one of the most important issues in understanding the coevolution of supermassive black holes (SMBHs) and galaxies. In our recent study, by using SDSS quasar spectra we found that the emission-line flux rations involving a nitrogen line, i.e., $NV{\lambda}1240$, correlate with the Eddington ratio. This correlation suggests that the mass accretion into SMBH is associated with a post-starburst phase, when AGB stars enrich the interstellar medium with the nitrogen. Moreover, we focused on nitrogen-loud quasars, which have prominent emission lines of the nitrogen, to investigate whether this argument is correct or not. We will present our recent results described above and discuss the relation between the star formation and feeding to SMBHs.

  • PDF

PROPERTIES OF THE MOLECULAR CLUMP AND THE ASSOCIATED ULTRACOMPACT H II REGION IN THE GAS SHELL OF THE EXPANDING H II REGION SH 2-104

  • Minh, Young Chol;Kim, Kee-Tae;Yan, Chi-Hung;Park, Yong-Sun;Lee, Seokho;Lal, Dharam Vil;Hasegawa, Tatsuhiko;Zhang, X.Z.;Kuan, Yi-Jeng
    • 천문학회지
    • /
    • 제47권5호
    • /
    • pp.179-185
    • /
    • 2014
  • We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the "collect and collapse" process. Physical parameters of the UC H II region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC H II region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the H II region.

Discovery of a New Mechanism of Dust Destruction in Strong Radiation Fields and Implications

  • Hoang, Thiem;Tram, Le Ngoc;Lee, Hyseung;Ahn, Sang-hyeon
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.44.3-44.3
    • /
    • 2019
  • Massive stars, supernovae, and kilonovae are among the most luminous radiation sources in the universe. Observations usually show near- to mid-infrared (NIR-MIR, 1-5~micron) emission excess from H II regions around young massive star clusters (YMSCs) and anomalous dust extinction and polarization towards Type Ia supernova (SNe Ia). The popular explanation for such NIR-MIR excess and unusual dust properties is the predominance of small grains (size a<0.05micron) relative to large grains (a>0.1micron) in the local environment of these strong radiation sources. The question of why small grains are predominant in these environments remains a mystery. Here we report a new mechanism of dust destruction based on centrifugal stress within extremely fast rotating grains spun-up by radiative torques, namely the RAdiative Torque Disruption (RATD) mechanism, which can resolve this question. We find that RATD can destroy large grains located within a distance of ~ 1 pc from a massive star of luminosity L~ 10^4L_sun and a supernova. This increases the abundance of small grains relative to large grains and successfully reproduces the observed NIR-MIR excess and anomalous dust extinction/polarization. We show that small grains produced by RATD can also explain the steep far-UV rise in extinction curves toward starburst and high redshift galaxies, as well as the decrease of the escape fraction of Ly-alpha photons observed from HII regions surrounding YMSCs.

  • PDF

THEORETICAL STUDY ON OBSERVED COLOR-MAGNITUDE DIAGRAMS

  • Lee, See-Woo
    • 천문학회지
    • /
    • 제12권1호
    • /
    • pp.41-70
    • /
    • 1979
  • From $B\ddot{o}hm$-Vitense's atmospheric model calculations, the relations, [$T_e$, (B-V)] and [B.C, (B-V)] with respect to heavy element abundance were obtained. Using these relations and evolutionary model calculations of Rood, and Sweigart and Gross, analytic expressions for some physical parameters relating to the C-M diagrams of globular clusters were derived, and they were applied to 21 globular clusters with observed transition periods of RR Lyrae variables. More than 20 different parameters were examined for each globular cluster. The derived ranges of some basic parameters are as follows; $Y=0.21{\sim}0.33,\;Z=1.5{\times}10^{-4}{\sim}4.5{\times}10^{-3},\;age,\;t=9.5{\sim}19{\times}10^9$ years, mass for red giants, $m_{RG}=0.74m_{\odot}{\sim}0.91m_{\odot}$, mass for RR Lyrae stars, $m_{RR}=0.59m_{\odot}{\sim}0.75m_{\odot}$, the visual magnitude difference between the turnoff point and the horizontal branch (HB), ${\Delta}V_{to}=3.1{\sim}3.4(<{\Delta}V_{to}>=3.32)$, the color of the blue edge of RR Lyrae gap, $(B-V)_{BE}=0.17{\sim}0.21=(<(B-V)_{BE}>=0.18),\;[\frac{m}{L}]_{RR}=-1.7{\sim}-1.9$, mass difference of $m_{RR}$ relative to $m_{RG},(m_{RG}-m_{RR})/m_{RG}=0.0{\sim}0.39$. It was found that the ranges of derived parameters agree reasonably well with the observed ones and those estimated by others. Some important results obtained herein can be summarized as follows; (i) There are considerable variations in the initial helium abundance and in age of globular clusters. (ii) The radial gradient of heavy element abundance does exist for globular clusters as shown by Janes for field stars and open clusters. (iii) The helium abundance seems to have been increased with age by massive star evolution after a considerable amount (Y>0.2) of helium had been attained by the Big-Bang nucleosynthesis, but there is not seen a radial gradient of helium abundance. (iv) A considerable amount of heavy elements ($Z{\sim}10{-3}$) might have been formed in the inner halo ($r_{GC}$<10 kpc) from the earliest galactic co1lapse, and then the heavy element abundance has been slowly enriched towards the galactic center and disk, establishing the radial gradient of heavy element abundance. (v) The final galactic disk formation might have taken much longer by about a half of the galactic age than the halo formation, supporting a slow, inhomogeneous co1lapse model of Larson. (vi) Of the three principal parameters controlling the morphology of C-M diagrams, it was found that the first parameter is heavy clement abundance, the second age and the third helium abundance. (vii) The globular clusters can be divided into three different groups, AI, BI and CII according to Z, Y an d age as well as Dickens' HB types. BI group clusters of HB types 4 and 5 like M 3 and NGC 7006 are the oldest and have the lowest helium abundance of the three groups. And also they appear in the inner halo. On the other hand, the youngest AI clusters have the highest Z and Y, and appear in the innermost halo region and in the disk. (viii) From the result of the clean separations of the clusters into three groups, a three dimensional classification with three parameters, Z, Y and age is prsented. (ix) The anomalous C-M diagrams can be expalined in terms of the three principal parameters. That is, the anomaly of NGC 362 and NGC 7006 is accounted for by the smaller age of the order of $1{\sim}2{\times}10^9$ years rather than by the helium abundance difference, compared with M 3. (x) The difference in two Oosterhoff types I and II can be explained in terms of the mean mass difference of RR Lyrae variables rather than in terms of the helium abundance difference as suggested by Stobie. The mean mass of the variables in Oosterhoff type I clusters is smaller by $0.074m_{\odot}$ which is exactly consistent with Rood's estimate. Since it was found that the mean mass of RR Lyrae stars increases with decreasing Z, the two Oosterhoff types can be explained substantially by the metal abundance difference; the type II has Z<$3.4{\times}10^{-4}$, and the type I has higher Z than the type II.

  • PDF

GRACES Observations of Mg-Enhanced Metal-Poor Stars in the Milky Way

  • Hye-Eun Jang;Young Sun Lee;Wako Aoki;Tadafumi Matsuno;Wonseok Kang;Ho-Gyu Lee;Sang-Hyun Chun;Miji Jeong;Sung-Chul Yoon
    • 천문학회지
    • /
    • 제56권1호
    • /
    • pp.11-22
    • /
    • 2023
  • We report the result of a high-resolution spectroscopic study on seven magnesium (Mg) enhanced stars. The high Mg abundances in these stars imply that they were born in an environment heavily affected by the nucleosynthesis products of massive stars. We measure abundances of 16 elements including Mg and they show various abundance patterns implying their diverse origin. Three of our program stars show a very high Mg to Si ratio ([Mg/Si] ≈ 0.18-0.25), which might be well explained by fall-back supernovae or by supernovae with rapid rotating progenitors having an initial mass higher than about 20 M. Another three of our program stars have high light to heavy s-process element ratios ([Y/Ba] ≈ 0.30-0.44), which are consistent with the theoretical prediction of the nucleosynthesis in rapidly rotating massive stars with an initial mass of about M = 40 M. We also report a star having both high Y ([Y/Fe] = 0.2) and Ba ([Ba/Fe] = 0.28) abundance ratios, and it also shows the highest Zn abundance ratio ([Zn/Fe] = 0.27) among our sample, implying the nucleosynthesis by asymmetric supernova explosion induced by very rapid rotation of a massive progenitor having an initial mass between 20 M ≲ M ≲ 40 M. A relative deficiency of odd-number elements, which would be a signature of the pair-instability nucleosynthesis, is not found in our sample.

[ H2S (22,0 - 21,1) ] OBSERVATIONS TOWARD THE SGR B2 REGION

  • MINH Y. C.;IRVINE W. M.;KIM S.-J.
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.131-135
    • /
    • 2004
  • The $H_2S\;(2_{2,0} - 2_{1,1})$ line emission is observed to be strongly localized toward Sgr B2(M), and emissions from other positions in the more extended SgrB2 region are almost negligible. $H_2S$ is thought to form effectively by the passage of the C-type shocks but to be quickly transformed to $SO_2$ or other sulfur species (Pineau des Forets et al. 1993). Such a shock may have enhanced the $H_2S$ abundance in Sgr B2(M), where massive star formation is taking place. But the negligible emission of $H_2S$ from other observed positions may indicate that these positions have not been affected by shocks enough to produce $H_2S$, or if they have experienced shocks, $H_2S$ may have transformed already to other sulfur-containing species. The $SO_2\;22_{2,20} - 22_{1,21}$ line was also observed to be detectable only toward the (M) position. The line intensity ratios of these two molecules appear to be very similar at Sgr B2(M) and IRAS 16239-2422, where the latter is a region of low-mass star formation. This may suggest that the shock environment in these two star-forming regions is similar and that the shock chemistry also proceeds in a similar fashion in these two different regions, if we accept shock formation of these two species.

Tracing Metallicity in the Scenario of High Velocity Clouds (HVCs) Colliding with our Milky Way

  • 성광현;곽규진
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.77.2-77.2
    • /
    • 2014
  • Questions of how our Milky Way evolves through the interaction with its environment have been constantly raised. One particularly interesting question is how the metallicity would change as our Milky Way goes through collision with HVCs. Because of the possibility of HVCs providing fuel for star formation in the Galactic disk, we simulate the collision between HVCs and the Galactic disk. More specifically, we trace how the Galactic metallicity changes throughout the process of HVCs colliding with our Milky Way based upon a specific scenario that HVCs are primordial gas left-overs from an ancient galaxy formation. Such mixing between metal-rich gas (disk) and metal-poor HVC can be traced by running numerical simulations with the FLASH code due to its capability of tracking down the abundance change of a specific element such as carbon at each time step of the hydrodynamic evolution. As for now, we give how this mixing depends on model parameters that we choose such as collision speed, initial metallicities, temperature and so on.

  • PDF

PHOTOMETRIC PROPERTIES AND METALLICITY OF V1719 CYGNI

  • Kim, Chul-Hee;Yushchenko, A.V.
    • 천문학회지
    • /
    • 제44권3호
    • /
    • pp.73-79
    • /
    • 2011
  • We collect 24 times of light maxima data from sources in the literature, unpublished data and open databases, and investigate the variations of the observed and calculated (O-C) values for light maxima of V1719 Cyg. We found no evidence of the variations in the (O-C) values. We estimate the effective temperature and surface gravity using both the Kurucz and MARCS/SSG grids for different metallicity values [A/H]=0.0 and +0.5 for V1719 Cyg. It is confirmed that the temperature is almost the same, but, in the case of surface gravity, the MARCS/SSG grid gives the value closest to that obtained from the period-gravity relation derived by using the pulsation-evolution theory. We obtain two spectra of V1719 Cyg from spectroscopic observation which permitted us to find the effective temperature and the surface gravity of the star directly. We estimate the metallicity and it is found that the abundance of iron is equal to the solar value.

SiO IN THE SGR B2 REGION

  • Minh, Y.C.
    • 천문학회지
    • /
    • 제40권3호
    • /
    • pp.61-65
    • /
    • 2007
  • The 2-1 and 5-4 transitions of SiO have been observed toward the Sgr B2 region, including the Principal Cloud(the GMC containing Sgr B2(M)) and its surroundings. The morphology and velocity structure of the SiO emission show a close resemblance with the HNCO Ring feature, identified by Minh & Irvine(2006), of about 10 pc in diameter, which may be expanding and colliding with the Principal Cloud. Three SiO clumps have been found around the Ring, with total column densities $N_{SiO}{\sim}1{\times}10^{14}cm^{-2}$ at the peak positions of these clumps. The fractional SiO abundance relative to $H_2$ has been estimated to be ${\sim}(0.5-1){\times}10^{-9}$, which is about two orders of magnitude larger than the quiet dense cloud values. Our SiO observational result supports the existence of an expanding ring, which may be triggering active star formations in the Principal Cloud.

IMPROVED CALCULATION OF NON-FUSION SOLAR NEUTRINOS PRODUCED BY RUBAKOV EFFECTS

  • LEE HAESHIM;LEE HOYUN;KOH YOON SUK
    • 천문학회지
    • /
    • 제26권1호
    • /
    • pp.79-81
    • /
    • 1993
  • We calculated the solar monopole abundance limit by comparing the observed solar neutrino flux and the calculation of non-fusion solar neutrino flux produced by Rubakov process in the solar core. We included the produced meson's enhancement effects by the surrounding ions in the solar core. We find that the monopole number $N_M<1.9\times10^{20}(1mb/{\sigma}0)$, where ${\sigma}0$ is the characteristic proton decay cross section of Rubakov process. This is similar or stronger than strong limits obtained from neutron star's luminosity.

  • PDF