• Title/Summary/Keyword: standardized uptake value

Search Result 94, Processing Time 0.028 seconds

Region of Interest Analysis for Standardized Uptake Value Ratio of 18F-fludeoxyglucose PET: Mild Cognitive Impairment and Alzheimer's Disease (경도인지장애와 알츠하이머병 환자의 18F-fludeoxyglucose PET 표준 섭취계수율에 대한 체적 및 피질 표면 기반 관심영역 분석)

  • Kim, Seonjik;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.237-242
    • /
    • 2018
  • $^{18}F$-fludeoxyglucose PET (FDG-PET) can help finding an abnormal metabolic activity in brain. In this study, we evaluated an efficiency of volume- and cortical surface-based analysis which were used to determine whether standardized uptake value ratio (SUVR) of FDG-PET was different among Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy control (HC). Each PET image was rigidly co-registered to the corresponding magnetic resonance imaging (MRI) using mutual information. All voxels of the co-registered PET images were divided by the mean FDG uptake of the cerebellum cortex which was thresholded by partial volume effect (>0.9). Also, the SUVR value of each vertex was linearly interpolated from volumetric SUVR image which was thresholded by gray matter partial volume effect (>0.1). Lobar mean values were calculated from both volume- and cortical surface-based SUVRs. Statistical analysis was conducted to compare two measures for AD, MCI and HC groups. Even though the results of volume (SUVR_vol) and cortical surface-based SUVR (SUVR_surf) analysis were not significantly different from each other, the latter would be better for detecting group differences in SUVR of PET.

Maximum standardized uptake value at pre-treatment PET in estimating lung cancer progression after stereotactic body radiotherapy

  • Park, Jisun;Choi, Yunseon;Ahn, Ki Jung;Park, Sung Kwang;Cho, Heunglae;Lee, Ji Young
    • Radiation Oncology Journal
    • /
    • v.37 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • Purpose: This study aimed to identify the feasibility of the maximum standardized uptake value (SUVmax) on baseline 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) as a predictive factor for prognosis in early stage primary lung cancer treated with stereotactic body radiotherapy (SBRT). Materials and Methods: Twenty-seven T1-3N0M0 primary lung cancer patients treated with curative SBRT between 2010 and 2018 were retrospectively evaluated. Four patients (14.8%) treated with SBRT to address residual tumor after wedge resection and one patient (3.7%) with local recurrence after resection were included. The SUVmax at baseline PET/CT was assessed to determine its relationship with prognosis after SBRT. Patients were divided into two groups based on maximum SUVmax on pre-treatment FDG PET/CT, estimated by receiver operating characteristic curve. Results: The median follow-up period was 17.7 months (range, 2.3 to 60.0 months). The actuarial 2-year local control, progression-free survival (PFS), and overall survival were 80.4%, 66.0%, and 78.2%, respectively. With regard to failure patterns, 5 patients exhibited local failure (in-field failure, 18.5%), 1 (3.7%) experienced regional nodal relapse, and other 2 (7.4%) developed distant failure. SUVmax was significantly correlated with progression (p = 0.08, optimal cut-off point SUVmax > 5.1). PFS was significantly influenced by pretreatment SUVmax (SUVmax > 5.1 vs. SUVmax ≤ 5.1; p = 0.012) and T stage (T1 vs. T2-3; p = 0.012). Conclusion: SUVmax at pre-treatment FDG PET/CT demonstrated a predictive value for PFS after SBRT for lung cancer.

Study on the Difference of Standardized Uptake Value in Fusion Image of Nuclear Medicine (핵의학 융합영상의 표준섭취계수 차이에 관한 연구)

  • Kim, Jung-Soo;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.553-560
    • /
    • 2018
  • PET-CT and PET-MRI which integrates CT using ionized radiation and MRI using phenomena of magnetic resonance are determined to have the limitation to apply the semi-quantitative index, standardized uptake value (SUV), with the same level due to the fundamental differences of image capturing principle and reorganization, hence, their correlations were analyzed to provide their clinical information. To 30 study subjects maintaining pre-treatment, $^{18}F-FDG$ (5.18 MBq/㎏) was injected and they were scanned continuously without delaying time using $Biograph^{TM}$ mMR 3T (Siemens, Munich) and Biograph mCT 64 (Siemens, Germany), which is an integral type, under the optimized condition except the structural differences of both scanners. Upon the measurement results of $SUV_{max}$ setting volume region of interest with evenly distributed radioactive pharmaceuticals by captured images, $SUV_{max}$ mean values of PET-CT and PET-MRI were $2.94{\pm}0.55$ and $2.45{\pm}0.52$, respectively, and the value of PET-MRI was measured lower by $-20.85{\pm}7.26%$ than that of PET-CT. Also, there was a statistically significant difference in SUVs between two scanners (P<0.001), hence, SUV of PET-CT and PET-MRI cannot express the clinical meanings in the same level. Therefore, in case of the patients who undergo cross follow-up tests with PET-CT and PET-MRI, diagnostic information should be analyzed considering the conditions of SUV differences in both scanners.

Prediction of Prognosis to Concurrent Chemo-Radiotherapy by Standardized Uptake Value of $2-[18^F]$ Fluovo-2-Deoxy-D-Glucose for Nasopharyngeal Carcinomas (비인강암 환자의 예후에서 $2-[18^F]$ Fluoro-2-Deoxy-D-Glucose PET 영상에서 계산되는 Standardized Uptake Value의 의의)

  • Lee Sang-wook;Im Ki Chun;Nam Soon Yuhl;Kim Jae Seung;Choi Eun Kyung;Ahn Seung Do;Shin Seong Soo;Ryu Jin Sook;Kim Sang Yoon;Lee Bong-Jae;Choi Seung-Ho;Kim Sung-Bae;Moon Dae Hyuk
    • Radiation Oncology Journal
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • Purpose : To prospectively evaluate the use of positron emission tomography with the glucose analog fluoro-deoxyglucose (FDG-PET) to deoxyglucose (FDG-PET) to predict disease-free survival (DFS) after concurrent chemo-radiotherapy (CCRT) in patients with non-disseminated nasopharyngeal carcinoma (NPC). Materials and Methods : We studied 41 patients with non-disseminated NPC scheduled to undergo platinum-based CCRT were eligible for this study. Patients were studied by FDG-PET prior to the CCRT. FDG uptake of tumors were measured with the maximal standardized uptake value (SUV). Results : Complete response rate was $100\%$. In ten patients who presented with any component of treatment failure, the median $SUV_{max}$ was 8.55 (range: $2.49\~14.81$) in any component of failure and the median $SUV_{max}$ was 5.48 (range: $2.31\~26.07$) In the remaining patients without any such failure. Patients having tumors with high FDG uptake had a significantly lower 3-year DFS ($51\%\;{\nu}91\%$, p=0.0070) compared with patients having low uptake tumors. Conclusion : FDG uptake, as measured by the SUV, has potential value in predicting DFS in NPC treated by CCRT, High FDG uptake may be a useful parameter for Identifying patients requiring more aggressive treatment approaches.

Clinical Reference of the Maximum Standardized Uptake Values to the Pancreatic Cancer, Pancreatitis and Normal Pancreas in the 18F-FDG PET-CT (18F-FDG PET-CT 검사에서 췌장암, 췌장염, 정상 췌장에 대한 최대 표준섭취계수의 임상적 기준 설정)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.80-86
    • /
    • 2018
  • The aim of this study were to establish the clinical references and guidelines for the maximum standardized uptake ($SUV_{max}$) value of pancreatic cancer, pancreatitis, and normal pancreas in $^{18}F-FDG$ PET-CT examinations for pancreatic disease. For this purpose, we performed the statistical analysis on the descriptive statistics, percentiles and inter quartiles range (IQR), normal distribution, and using the probability density function for pancreatic cancer, pancreatitis, and normal pancreas. As a result, the clinical reference of $SUV_{max}$ for the pancreatic cancer, pancreatitis, and normal pancreas was more than 3.45, 1.91 to 2.62, and less than 1.91, respectively. Also, optimal cut-off value for applying the dual time point PET-CT examination was determined to be 2.62. The results of this study are summarized as follows: first, we suggests the clinical reference and guideline for the pancreatic cancer, pancreatitis, and normal pancreas, and second, suggests a scientific approach to improve diagnostic accuracy of pancreatic disease by deviating from an approximate experience approach.

Effect of Extended Field of View on Measurements of Standardized Uptake Value in PET/CT (PET/CT검사에서 CT의 확대 유효시야 적용이 표준화섭취계수에 미치는 영향)

  • Park, Soon-Ki;Nam, Ki-Pyo;Kim, Kyeong-Sik;Shin, Sang-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.82-85
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the effect of extended CT field of view (FOV) on PET/CT of Standardized uptake value (SUV) when imaging extends beyond the CT FOV. Materials and Methods: CT images were reconstructed at different FOV sizes (500 and 700 mm). Two sets of CT images were reconstructed from the CT projection data by using two FOV sizes. Twenty patients were used in this study. PET images were reconstructed using attenuation maps with 500 mm CT FOV and 700 mm extended CT FOV images. Region of interests (ROIs) drawn on the PET images. In addition, twenty patients' PET images reconstructed by 500 mm CT FOV and 700 mm extended CT FOV were compared with $SUV_{max}$. Results: When using attenuation maps with 700 mm extended CT FOV, the $SUV_{max}$ analysis of liver (p=0.000), lung (p=0.007), mediastinum (p=0.001) were statistically significant. Conclusions: 700 mm extended CT FOV helps to recover the true activity distribution in the PET emission data. In addition, 700 mm extended CT FOV has affected SUV measurement of liver, lung, mediastinum.

  • PDF

A Study of Standarzied Uptake Value Change on the Type of Mateiral (물질의 종류에 따른 표준섭취계수의 변화에 관한 연구)

  • Kim, Ki-Jin;Kim, Chong-Yeal;Bae, Seok-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3572-3578
    • /
    • 2011
  • In Positron Emission Tomography Computed Tomography, Standardized Uptake Value(SUV)is most generally used to discern tumors. However, SUV may be influenced other factors. In this study, experiment was conducted distrotion in image and change in SUV according to substance with GEMINI TF PET/CT of Philips.. SUV for materials resulted in 1.8 for stainless, 1.4 for stent, 2.4 for iodine contrast medium, 2.6 for Barium Sulfate, 1.6 for Gypsum, and 1.4 for paraffin respectively. The distortion of image was remarkable for the iodine contrast medium and Barium Sulfate. For the barium sulfate, the higher the density, the larger the distrotion of the images. As a result of test, it appeared that the metallic substance whose atomic number is low and contrast medium whose concentration is low didn't affect the distortion in image and the change in SUV. However, it tis necessary to minimize distortion in image and change in SUV, by removing the metallic substance and checking if there are contrast mdeium or before examination.

Usefulness of Dynamic $^{18}F-FDG$ PET Scan in Lung Cancer and Inflammation Disease (폐암과 폐 염증성질환의 동적양전자방출단층검사 (Dynamic $^{18}F-FDG$ PET)의 유용성)

  • Park, Hoon-Hee;Roh, Dong-Wook;Kim, Sei-Young;Rae, Dong-Kyeong;Lee, Min-Hye;Kang, Chun-Goo;Lim, Han-Sang;Oh, Ki-Back;Kim, Jae-Sam;Lee, Chang-Ho
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.249-255
    • /
    • 2006
  • Purpose: The diagnostic utility of fluorine-18 2-deoxy-D-glucose positron emission tomograhpy ($^{18}F-FDG $PET) for the non-invasive differentiation of focal lung lesions originated from cancer or inflammation disease by combined visual image interpretation and semi-quantitative uptake value analysis has been documented. In general, Standardized Uptake Value(SUV) is used to diagnose lung disease. But SUV does not contain dynamic information of lung tissue for the glucose. Therefore, this study was undertaken to hypothesis that analysis of dynamic kinetics of focal lung lesions base on $^{18}F-FDG$ PET may more accurately determine the lung disease. So we compared Time Activity Curve(TAC), Standardized Uptake Value-Dynamic Curve(SUV-DC) graph pattern with Glucose Metabolic Rate(MRGlu) from Patlak analysis. Methods: With lung disease, 17 patients were examined. They were injected with $^{18}F-FDG$ over 30-s into peripheral vein while acquisition of the serial transaxial tomographic images were started. For acquisition protocol, we used twelve 10-s, four 30-s, sixteen 60-s, five 300-s and one 900-s frame for 60 mins. Its images were analyzed by visual interpretation TAC, SUV-DC and a kinetic analysis(Patlak analysis). The latter was based on region of interest(ROIs) which were drawn with the lung disease shape. Each optimized patterns were compared with itself. Results: In TAC patterns, it hard to observe cancer type with inflammation disease in early pool blood area but over the time cancer type slope more remarkably increased than inflammation disease. SUV-DC was similar to TAC pattern. In the result of Patlak analysis, In time activity curve of aorta, even though inflammation disease showed higher blood activity than cancer, at first as time went by, blood activity of inflammation disease became the lowest. However, in time activity curve of tissue, cancer had the highest uptake and inflammation disease was in the middle. Conclusion: Through the examination, TAC and SUV-DC could approached the results that lung cancer type and inflammation disease type has it's own difference shape patterns. Also, it has outstanding differentiation between cancer type and inflammation in Patlak and MRGlu analysis. Through these analysis methods, it will helpful to separation lung disease.

  • PDF

18F-2-Deoxy-2-Fluoro-D-Glucose Positron Emission Tomography: Computed Tomography for Preoperative Staging in Gastric Cancer Patients

  • Youn, Seok Hwa;Seo, Kyung Won;Lee, Sang Ho;Shin, Yeon Myung;Yoon, Ki Young
    • Journal of Gastric Cancer
    • /
    • v.12 no.3
    • /
    • pp.179-186
    • /
    • 2012
  • Purpose: The use of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography-computed tomography as a routine preoperative modality is increasing for gastric cancer despite controversy with its usefulness in preoperative staging. In this study we aimed to determine the usefulness of preoperative positron emission tomography-computed tomography scans for staging of gastric cancer. Materials and Methods: We retrospectively analyzed 396 patients' positron emission tomography-computed tomography scans acquired for preoperative staging from January to December 2009. Results: The sensitivity of positron emission tomography-computed tomography for detecting early gastric cancer was 20.7% and it was 74.2% for advanced gastric cancer. The size of the primary tumor was correlated with sensitivity, and there was a positive correlation between T stage and sensitivity. For regional lymph node metastasis, the sensitivity and specificity of the positron emission tomography-computed tomography were 30.7% and 94.7%, respectively. There was no correlation between T stage and maximum standardized uptake value or between tumor markers and maximum standardized uptake value. Fluorodeoxyglucose uptake was detected by positron emission tomography-computed tomography in 24 lesions other than the primary tumors. Among them, nine cases were found to be malignant, including double primary cancers and metastatic cancers. Only two cases were detected purely by positron emission tomography-computed tomography. Conclusions: Positron emission tomography-computed tomography could be useful in detecting metastasis or another primary cancer for preoperative staging in gastric cancer patients, but not for T or N staging. More prospective studies are needed to determine whether positron emission tomography-computed tomography scans should be considered a routine preoperative imaging modality.

Evaluation of Therapeutic Efficacy using [18F]FP-CIT in 6-OHDA-induced Parkinson's Animal Model

  • Jang Woo Park;Yi Seul Choi;Dong Hyun Kim;Eun Sang Lee;Chan Woo Park;Hye Kyung Chung;Ran Ji Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2023
  • Parkinson's disease is a neurodegenerative disease caused by damage to brain neurons related to dopamine. Non-clinical animal models mainly used in Parkinson's disease research include drug-induced models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, and genetically modified transgenic animal models. Parkinson's diagnosis can be made using brain imaging of the substantia nigra-striatal dopamine system and using a radiotracer that specifically binds to the dopamine transporter. In this study, 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane was used to confirm the image evaluation cutoff between normal and parkinson's disease models, and to confirm model persistence over time. In addition, the efficacy of single or combined administration of clinically used therapeutic drugs in parkinson's animal models was evaluated. Image analysis was performed using the PMOD software. Converted to standardized uptake value, and analyzed by standardized uptake value ratio by dividing the average value of left striatum by the average value of right striatum obtained by applying positron emission tomography images to the atlas magnetic resonance template. The image cutoff of the normal and the parkinson's disease model was calculated as SUVR=0.829, and it was confirmed that it was maintained during the test period. In the three-drug combination administration group, the right and left striatum showed a high symmetry of more than 0.942 on average and recovered significantly. Images using 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane are thought to be able to diagnose and evaluate treatment efficacy of non-clinical Parkinson's disease.