• Title/Summary/Keyword: standard size

Search Result 3,331, Processing Time 0.035 seconds

Application of ZVI/TiO2 towards Clean-up of the Contaminated Soil with Polychlorinated Biphenyls (ZVI/TIO2를 이용한 폴리염화비페닐로 오염된 토양 정화)

  • Jae Wook Park;Yun Jin Jo;Dong-Keun Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2023
  • Once a site is contaminated with polychlorinated biphenyls (PCBs), serious environmental and human health risks are inevitable. Therefore, innovative but economical in situ remediation technologies must be immediately applied to the contaminated site. Recently, nanoscale zero-valent iron (nano-ZVI) particles have successfully been applied for the dechlorination of various chlorinated organic compounds like TCE, PCE and DDT, and they are considered to be environmentally safe due to the high abundance of iron in the earth's crust. Nano-ZVIs are much more reactive than granular ones, but tend to agglomerate due to their high surface energy and magnetic properties. In order to prevent them from being agglomerated toward larger particles, TiO2 was used as a support to immobilize the nano-ZVI particles as much as possible. 10wt% ZVI/TiO2 was prepared by adding NaBH4 slowly into an FeSO4/TiO2 aqueous slurry. In spite of their non-uniformity in size, the nano-ZVI particles were quite successfully dispersed onto the exterior surface of a non-porous TiO2 powder. The ZVI/TiO2 was then employed to degrade Aroclor 1242, a kind of PCBs standard, in spiked soil, and its reactivity towards the degradation of Aroclor 1242 was investigated. The fabricated ZVI/TiO2 degraded Aroclor 1242 in soil quite effectively, but the creation of remaining dechlorinated compounds, possibly high molecular weight hydrocarbons, in the soil was unavoidable.

Measurements of Trimethylamine (TMA) in air by Tedlar bag sampling and SPME analysis (환경대기 중 Trimethylamine (TMA)의 측정: Tedlar bag 방식의 채취와 SPME 분석법의 특성 연구)

  • Kim, K.H.;Hyum, S.H.;Im, M.S.
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.96-102
    • /
    • 2006
  • Trimethylamine (TMA) is one of the difficult odorous compounds for the collection and analysis. Although sulfuric acid absorption and/or sulfuric acid impregnated filter method are commonly recommended for its sampling, these methods also suffer from difficulties involved in sample treatment and operational procedures. Hence, as an ancillary approach to measure TMA, we investigated the combination of bag sampling and SPME analysis for TMA measurements. For the purpose of our study, we investigated the following three subjects: 1) temporal variability of standard storage, 2) bag loss effect of TMS, and 3) TMA loss due to repetitive analysis of an identical bag sample. According to our storage test up to 7 or 20 dyas, TMA loss were found to occur up to 40 to 50% within relatively short period of up to 48 hrs depending on its concentration ranges. When the tests were made for bag loss by transferring TMA standards across different size bags, we were able to find that the extent of bag loss are not significant with 5 to 20% loss rate. Finally, the TMA sorptive loss via its exposure to SPME fiber was generally estimated to run from 2 to 3%.

A Study on Improvement of throughput-linked Port Development (Trigger Rule) System (물동량 연동 항만개발제도 개선방안 연구)

  • LEE, Su-Young;LEE, Na-Young
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.179-189
    • /
    • 2023
  • Korea's port development adjusts the completion time and size of port facilities according to the future port throughput. The current port development system, which is referred to as "throughput-linked port development (Trigger Rule)", has received positive evaluation for efficiently executing the limited port development budget. Recently concerns have been growing over deteriorating service levels in port facilities in Korea due to accelerated aging of terminal facilities. However, the current port development system does not possess any standard for assessing the level of service and utilizing development indicators. The purpose of this paper is to calculate the Port Service Index (PSI) by selecting indicators to measure the Level of Service (LOS) of ports and deriving weights between the indicators, so that the current "throughput-linked port development (Trigger Rule)" can be linked with the level of service. Based on the result of analysis on a variety of preceding studies, the ship waiting rate, berth productivity, ship turnaround time and ship productivity were selected as four indicators to constitute the Port Service Index. The AHP and entropy methodologies were used to derive weights for each of four indicators which were later combined to calculate the comprehensive weight. The calculation formula of the Port Service Index (PSI) was derived by using the aggregated weights of each indicator, based on which the LOS of domestic container and bulk terminals were evaluated and this measurement result was divided into 6 classes to define each LOS. This paper contributes to draw the improvement measures for port development system that are able to connect the quantitative indicator of throughput, as well as a qualitative indicator of the level of "service".

Natural Sand in Korea - Quality Evaluation - (한국의 모래 -품질평가-)

  • Sei Sun Hong;Jin Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.185-204
    • /
    • 2024
  • This study was conducted for evaluation the geological, physical, and chemical properties of domestic sand by analyzing about 4,800 quality data of natural sand from river and land area surveyed until 2023 through the aggregate resource survey conducted by the Ministry of Land, Infrastructure and Transport. The average depth of the Quaternary unconsolidated sedimentary layer in Korea, which includes a sand layer, is about 10m (maximum depth 66m). The thickness of the sand layer within the sedimentary layer is most dominant in the range of 0.5m to 4.0m. This accounts for about 70% of the entire sand layer. In the sand layer, the ratio of sand, gravel, and clay is 60:20:10. Regardless of the provenance or geology, the sand is mainly composed of quartz, plagioclase, and K-feldspar, and the minor minerals are muscovite, biotite, chlorite, magnetite, epidote. The sand includes in 45~75% of quartz, 5~20% of plagioclase and K-feldspar, each other. And other minor minerals are included in 10%. The average grain size of sand is 0.5mm to 1.0mm, which accounts for 44% of sand samples. The water absorption rate and soundness are estimated to be suitable for aggregate quality standard in almost all sand, and the absolute dry density is suitable for 66%.

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

Evaluation of Malignancy Risk of Ampullary Tumors Detected by Endoscopy Using 2-[18F]FDG PET/CT

  • Pei-Ju Chuang;Hsiu-Po Wang;Yu-Wen Tien;Wei-Shan Chin;Min-Shu Hsieh;Chieh-Chang Chen;Tzu-Chan Hong;Chi-Lun Ko;Yen-Wen Wu;Mei-Fang Cheng
    • Korean Journal of Radiology
    • /
    • v.25 no.3
    • /
    • pp.243-256
    • /
    • 2024
  • Objective: We aimed to investigate whether 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) can aid in evaluating the risk of malignancy in ampullary tumors detected by endoscopy. Materials and Methods: This single-center retrospective cohort study analyzed 155 patients (79 male, 76 female; mean age, 65.7 ± 12.7 years) receiving 2-[18F]FDG PET/CT for endoscopy-detected ampullary tumors 5-87 days (median, 7 days) after the diagnostic endoscopy between June 2007 and December 2020. The final diagnosis was made based on histopathological findings. The PET imaging parameters were compared with clinical data and endoscopic features. A model to predict the risk of malignancy, based on PET, endoscopy, and clinical findings, was generated and validated using multivariable logistic regression analysis and an additional bootstrapping method. The final model was compared with standard endoscopy for the diagnosis of ampullary cancer using the DeLong test. Results: The mean tumor size was 17.1 ± 7.7 mm. Sixty-four (41.3%) tumors were benign, and 91 (58.7%) were malignant. Univariable analysis found that ampullary neoplasms with a blood-pool corrected peak standardized uptake value in earlyphase scan (SUVe) ≥ 1.7 were more likely to be malignant (odds ratio [OR], 16.06; 95% confidence interval [CI], 7.13-36.18; P < 0.001). Multivariable analysis identified the presence of jaundice (adjusted OR [aOR], 4.89; 95% CI, 1.80-13.33; P = 0.002), malignant traits in endoscopy (aOR, 6.80; 95% CI, 2.41-19.20; P < 0.001), SUVe ≥ 1.7 in PET (aOR, 5.43; 95% CI, 2.00-14.72; P < 0.001), and PET-detected nodal disease (aOR, 5.03; 95% CI, 1.16-21.86; P = 0.041) as independent predictors of malignancy. The model combining these four factors predicted ampullary cancers better than endoscopic diagnosis alone (area under the curve [AUC] and 95% CI: 0.925 [0.874-0.956] vs. 0.815 [0.732-0.873], P < 0.001). The model demonstrated an AUC of 0.921 (95% CI, 0.816-0.967) in candidates for endoscopic papillectomy. Conclusion: Adding 2-[18F]FDG PET/CT to endoscopy can improve the diagnosis of ampullary cancer and may help refine therapeutic decision-making, particularly when contemplating endoscopic papillectomy.

Vertebral Venous Congestion That May Mimic Vertebral Metastasis on Contrast-Enhanced Chest Computed Tomography in Chemoport Inserted Patients

  • Jeong In Shin;Choong Guen Chee;Min A Yoon;Hye Won Chung;Min Hee Lee;Sang Hoon Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.62-73
    • /
    • 2024
  • Objective: This study aimed to determine the prevalence of vertebral venous congestion (VVC) in patients with chemoport insertion, evaluate the imaging characteristics of nodular VVC, and identify the factors associated with VVC. Materials and Methods: This retrospective single-center study was based on follow-up contrast-enhanced chest computed tomography (CT) of 1412 adult patients who underwent chemoport insertion between January 2016 and December 2016. The prevalence of venous stenosis, reflux, and VVC were evaluated. The imaging features of nodular VVC, including specific locations within the vertebral body, were analyzed. To identify the factors associated with VVC, patients with VVC were compared with a subset of patients without VVC who had been followed up for > 3 years without developing VVC after chemoport insertion. Toward this, a multivariable logistic regression analysis was performed. Results: After excluding 333 patients, 1079 were analyzed (mean age ± standard deviation, 62.3 ± 11.6 years; 540 females). The prevalence of VVC was 5.8% (63/1079), with all patients (63/63) demonstrating vertebral venous reflux and 67% (42/63) with innominate vein stenosis. The median interval between chemoport insertion and VVC was 515 days (interquartile range, 204-881 days). The prevalence of nodular VVC was 1.5% (16/1079), with a mean size of 5.9 ± 3.1 mm and attenuation of 784 ± 162 HU. Nodular VVC tended to be located subcortically. Forty-four patients with VVC underwent CT examinations with contrast injections in both arms; the VVC disappeared in 70% (31/44) when the contrast was injected in the arm contralateral to the chemoport site. Bevacizumab use was independently associated with VVC (odds ratio, 3.45; P < 0.001). Conclusion: The prevalence of VVC and nodular VVC was low in patients who underwent chemoport insertion. Nodular VVC was always accompanied by vertebral venous reflux and tended to be located subcortically. To avoid VVC, contrast injection in the arm contralateral to the chemoport site is preferred.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem;Sidi Mohamed Medjdoub;Madani Kouider;Kaddouri Nadia;Elajrami Mohamed;Belhouari Mohamed;Amin Houari;Salah Amroune;R.D.S.G. Campilho
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.83-103
    • /
    • 2024
  • Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.

Analysis of the application of image quality assessment method for mobile tunnel scanning system (이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석)

  • Chulhee Lee;Dongku Kim;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.365-384
    • /
    • 2024
  • The development of scanning technology is accelerating for safer and more efficient automated inspection than human-based inspection. Research on automatically detecting facility damage from images collected using computer vision technology is also increasing. The pixel size, quality, and quantity of an image can affect the performance of deep learning or image processing for automatic damage detection. This study is a basic to acquire high-quality raw image data and camera performance of a mobile tunnel scanning system for automatic detection of damage based on deep learning, and proposes a method to quantitatively evaluate image quality. A test chart was attached to a panel device capable of simulating a moving speed of 40 km/h, and an indoor test was performed using the international standard ISO 12233 method. Existing image quality evaluation methods were applied to evaluate the quality of images obtained in indoor experiments. It was determined that the shutter speed of the camera is closely related to the motion blur that occurs in the image. Modulation transfer function (MTF), one of the image quality evaluation method, can objectively evaluate image quality and was judged to be consistent with visual observation.