• 제목/요약/키워드: standard cell

Search Result 1,463, Processing Time 0.05 seconds

High Performance and FPGA Implementation of Scalable Video Encoder

  • Park, Seongmo;Kim, Hyunmi;Byun, Kyungjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.353-357
    • /
    • 2014
  • This paper, presents an efficient hardware architecture of high performance SVC(Scalable Video Coding). This platform uses dedicated hardware architecture to improve its performance. The architecture was prototyped in Verilog HDL and synthesized using the Synopsys Design Compiler with a 65nm standard cell library. At a clock frequency of 266MHz, This platform contains 2,500,000 logic gates and 750,000 memory gates. The performance of the platform is indicated by 30 frames/s of the SVC encoder Full HD($1920{\times}1080$), HD($1280{\times}720$), and D1($720{\times}480$) at 266MHz.

An Analysis of the Unequal Wilkinson Power Divider Using the Finite-Difference Time-Domain (FDTD) Method (시간 영역 유한 차분법(FDTD)을 이용한 비등분 Wilkinson 전력 분배기의 해석)

  • 김광조;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.715-724
    • /
    • 1998
  • The FDTD(Finite-Difference Time-Domain) method is applied to analyze an unequal Wilkinson power divider. Unequal Wilkinson power divider has complex structures and the standard Yee Cell modeling method is not appropriate. In this paper, nonuniform gridding and subcell modeling are used to accurately analyze the characteristics of an unequal Wilkinson power divider. For comparison, the numerical results are presented with those from a commercial circuit simulator.

  • PDF

A mechanism of IPP(Coal Fired)'s optimal power generation according to the introduction of RPS (Renewable Portfolio Standard) (RPS 제도 도입에 따른 민간 석탄 발전소의 최적 발전량 감소 메커니즘 연구)

  • Ha, Sun-Woo;Lee, Sang-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.455-456
    • /
    • 2015
  • 2010년 민간 기업의 1,000 MW 규모 석탄 화력 발전소가 전력수급 기본계획에 최초로 반영된 이래로 이들이 해결해야 하는 가장 큰 난제는 RPS 제도 도입과 그에 따른 REC 공급의무이다. 만약 민간 석탄 발전소들이 REC 공급의무를 불이행하게 된다면, 막대한 과징금이 부과되기 때문에 이들의 전력생산 비용함수는 이를 반영하여 수정되어야 한다. 더 나아가 REC 공급의무는 발전량에 따라 결정되기 때문에, 민간 발전사업자가 자신의 REC 공급의무 이행능력이 부족하다고 판단할 경우 자체적으로 발전량을 감축하여 과징금을 낮추는 전략을 선택할 수 있다. 본 논문에서는 RPS 제도 도입에 따른 민간 석탄 발전소의 비용함수 변화와 이윤(수익) 극대화를 위하여 발전량을 감소시키는 메커니즘을 분석하였다.

  • PDF

A Study of Technology for the Accurate Measurement of the Remaining Energy in Secondary Cells

  • Kim, Seung-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.28-35
    • /
    • 2007
  • In this paper, a study was made of the technology used to measure the remaining amount of energy in secondary cells, for which demand is ever increasing. First, the standard data were stored for measurement of the remaining energy and a compare/analysis algorithm was developed. Next, hardware was designed and a prototype that can display the SOC(State Of Charge) through an LCD displayinstrument was created. The small size of the prototype allows it to be portable and its performance is within ${\pm}4$[%].

Calculation of Turbulent Flows Using an Implicit Scheme on Two-Dimensional Unstructured Meshes (2차원 비정렬 격자에서의 내재적 기법을 이용한 난류 유동 계산)

  • Kang Hee Jung;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.29-37
    • /
    • 1997
  • An implicit viscous turbulent flow solver is developed for two-dimensional geometries on unstructured triangular meshes. The flux terms are discretized based on a cell-centered finite-volume formulation with the Roe's flux-difference splitting. The solution is advanced in time using an implicit backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with the Gauss-Seidel relaxation scheme. The effect of turbulence effects is approximated with a standard $k-{\varepsilon}$ two-equation model which is solved separately from the mean flow equations using the same backward-Euler time integration scheme. The triangular meshes are generated using an advancing-front/layer technique. Validations are made for flows over the NACA0012 airfoil and the Douglas 3-element airfoil. Good agreements are obtained between the numerical results and the experiment.

  • PDF

Sensing method of multi-component forces and moments using a column structure (기둥을 이용한 다축 힘/모멘트 감지 방법에 관한 연구)

  • Shin, H.H.;Kang, D.I.;Park, Y.K.;Kim, J.H.;Joo, J.W.;Kim, O.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.837-841
    • /
    • 2001
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor can solve the problem about low stiffness and high cost. The radius of the column was designed analytically and compared with finite element analysis. The coupling errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine in Korea Research Institute of Standards and Science(KRISS). The calibration showed that the multi-component force/moment sensor had coupling error less than 19.8 % between $F_x$ and $M_y$ components, and 9.0 % in case of other components.

  • PDF

Plasma Synthesis of Silicon Nanoparticles for Next Generation Photovoltaics

  • Kim, Ka-Hyun;Kim, Dong Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.135.1-135.1
    • /
    • 2014
  • Silicon nanoparticles can be synthesized in a standard radio-frequency glow discharge system at low temperature (${\sim}200^{\circ}C$). Plasma synthesis of silicon nanoparticles, initially a side effect of powder formation, has become over the years an exciting field of research which has opened the way to new opportunities in the field of materials deposition and their application to optoelectronic devices. Hydrogenated polymorphous silicon (pm-Si:H) has a peculiar microstructure, namely a small volume fraction of plasma synthesized silicon nanoparticles embedded in an amorphous matrix, which originates from the unique deposition mechanism. Detailed discussion on plasma synthesis of silicon nanoparticles, growth mechanism and photovoltaic application of pm-Si:H will be presented.

  • PDF

Development of Bioartificial Skin for Skin Regeneration (손상된 피부 재건을 위한 바이오인공피부의 개발 동향)

  • Seo, Young-Kwon;Song, Kye-Yong;Park, Jung-Keug
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.8-17
    • /
    • 2008
  • There are many different approaches to healing of acute and chronic ulcer and large skin defect, such as burn. Currently available wound covers fall into two categories. Permanent covering, such as autografts, and temporary ones, such as allograft including de-epidermized cadaver skin, bioartificial skin, xenografts, and synthetic dressings. Autologous skin grafting in the form of split- or full-thickness skin is still the good standard. Following on from developments in the 1980s involving the use of cultured keratinocyte grafts in wound healing, the last decade has been great progress in the fabrication of composite bioartificial skin grafts. However, two bottleneck on producing cultured bioartificial skin, whether of the simple epithelial cell sheet type, or the more complex composite type, continue to be the generation of sufficient keratinocytes cheaply and quickly and develop biocompatible dermal scaffolds. This article covers the development, clinical application, and current research directions associated with bioartificial skin.

Fabrication of Microcapsules Encapsulating Fluorescent Nanoparticles and Visualization of Their Inclusion (형광 나노입자를 수용하는 마이크로캡슐의 제작 및 수용 가시화)

  • Kim, Eun-Young;Kim, Hyoung-Hoon;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a fabrication method of microcapsules encapsulating fluorescent nanoparticles sensitive to an organic liquid, which is potentially applicable to the encapsulation of protein, cell and drug. It uses the supra-molecular self-assembly of a block copolymer at the interface of the stable and controllable droplets of water suspended with fluorescent nanoparticles and the polymer solved organic. The size and uniformity of the microcapsules were examined for the various polymer concentrations by using SEM image analysis. The maximum standard deviation of the produced microcapsules of less than 3.5% was obtained from the microcapsules produced from the same conditions. The inclusion of fluorescent nanoparticles was visualized in the fluorescence microscope and by using TEM image. It is shown that this fabrication method can provide the uniform size microcapsules with a higher inclusion.

Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development

  • Jung, Joohee
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Xenograft models of human cancer play an important role in the screening and evaluation of candidates for new anticancer agents. The models, which are derived from human tumor cell lines and are classified according to the transplant site, such as ectopic xenograft and orthotopic xenograft, are still utilized to evaluate therapeutic efficacy and toxicity. The metastasis model is modified for the evaluation and prediction of cancer progression. Recently, animal models are made from patient-derived tumor tissue. The patient-derived tumor xenograft models with physiological characters similar to those of patients have been established for personalized medicine. In the discovery of anticancer drugs, standard animal models save time and money and provide evidence to support clinical trials. The current strategy for using xenograft models as an informative tool is introduced.