• Title/Summary/Keyword: standard Lie algebra

Search Result 5, Processing Time 0.017 seconds

CHARACTERIZATION OF LIE TYPE DERIVATION ON VON NEUMANN ALGEBRA WITH LOCAL ACTIONS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1193-1208
    • /
    • 2021
  • Let 𝓐 be a von Neumann algebra with no central summands of type I1. In this article, we study Lie n-derivation on von Neumann algebra and prove that every additive Lie n-derivation on a von Neumann algebra has standard form at zero product as well as at projection product.

ADDITIVITY OF LIE MAPS ON OPERATOR ALGEBRAS

  • Qian, Jia;Li, Pengtong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.271-279
    • /
    • 2007
  • Let A standard operator algebra which does not contain the identity operator, acting on a Hilbert space of dimension greater than one. If ${\Phi}$ is a bijective Lie map from A onto an arbitrary algebra, that is $${\phi}$$(AB-BA)=$${\phi}(A){\phi}(B)-{\phi}(B){\phi}(A)$$ for all A, B${\in}$A, then ${\phi}$ is additive. Also, if A contains the identity operator, then there exists a bijective Lie map of A which is not additive.

LIE BIALGEBRA ARISING FROM POISSON BIALGEBRA U(sp4)

  • Oh, Sei-Qwon;Hyun, Sun-Hwa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2008
  • Let $U(sp_4)$ be the universal enveloping algebra of the symplectic Lie algebra $sp_4$. Then the restricted dual $U(sp_4)^{\circ}$ becomes a Poisson Hopf algebra with the Sklyanin Poisson bracket determined by the standard classical r-matrix. Here we illustrate a method to obtain the Lie bialgebra from a Poisson bialgebra $U(sp_4)^{\circ}$.

  • PDF

PSEUDO-RIEMANNIAN SASAKI SOLVMANIFOLDS

  • Diego Conti;Federico A. Rossi;Romeo Segnan Dalmasso
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.115-141
    • /
    • 2023
  • We study a class of left-invariant pseudo-Riemannian Sasaki metrics on solvable Lie groups, which can be characterized by the property that the zero level set of the moment map relative to the action of some one-parameter subgroup {exp tX} is a normal nilpotent subgroup commuting with {exp tX}, and X is not lightlike. We characterize this geometry in terms of the Sasaki reduction and its pseudo-Kähler quotient under the action generated by the Reeb vector field. We classify pseudo-Riemannian Sasaki solvmanifolds of this type in dimension 5 and those of dimension 7 whose Kähler reduction in the above sense is abelian.