• Title/Summary/Keyword: stairs walking

Search Result 118, Processing Time 0.026 seconds

Kinematic Analysis of Lower Extremities during Staris and Ramp Walking with Hemiplegic Patients (편마비 환자의 계단과 경사로 보행 동안 하지의 운동학적 분석)

  • Cheon, Dong-Whan
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.297-302
    • /
    • 2013
  • Purpose: This study was conducted in order to investigate the kinematic gait parameter of lower extremities with different gait conditions (level walking, stair, ramp) in hemiplegic patients. Methods: Ten hemiplegic patients participated in this study and kinematic data were measured using a 3D motion analysis system (LUKOtronic AS202, Lutz-kovacs-Electronics, Innsbruk, Austria). Statistical analysis was performed using one-way repeated measure of ANOVA in order to determine the difference of lower extremity angle at each gait phase with different gait conditions. Results: Affected degree of ankle joint in the heel strike phase showed significant difference between level walking and climbing stairs, and toe off phase showed significant difference between level walking and climbing stairs, ramps, and climbing stairs. Affected degree of knee joint showed no significant difference in all attempts. Affected degree of hip joint in the toe off phase showed significant difference between level walking, ramps and stairs, and climbing ramps. Swing phase showed significant difference between sides for level walking and stairs, climbing ramps. Affected ankle joint of heel strike and toe off, and affected hip joint of toe off and the maximum angle of swing phase in the angle was increased. Unaffected side of the ankle joint, knee joint, and hip joint showed a significant increase in walking phase. Conclusion: These findings indicate that compared with level walking, different results were obtained for joint angle of lower extremity when climbing stairs and ramps. In hemiplegia patient's climbing ramps, stairs, more movement was observed not only for the non-affected side but also the ankle joint of the affected side and hip joint. According to these findings of hemiplegic patients when climbing stairs or ramps, more joint motion was observed not only on the unaffected side but also on the affected side compared with flat walking.

Trajectory generation method for bipedal walking on the stairs (두발 로봇의 계단 보행궤적 생성방법)

  • Park, Chan-Soo;Choi, Chong-Ho;Ha, Tae-Sin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.172-174
    • /
    • 2006
  • In this paper, we propose the trajectory generation method for bipedal walking on the stairs. This method is based on multi-masses inverted pendulum mode (MMIPM). MMIPM can effectively reduce the ZMP error but it is only applied to walking on the flat ground. In order to reduce ZMP error when a robot walks on the stairs, we generate the walking motion by MMIPM and modify that motion using parametric functions. We determine the values of the parameters by the simulations. Simulation results show that the robot can walk more stable on the stairs.

  • PDF

A Study on the Character and Walking Velocity of Crowd Going up Stairs (계단에서 올라가는 군집보행의 속도에 관한 조사 및 특성에 관한 연구)

  • Park, Jae-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The effort of transferring some parts of urban functions to the underground space is growing trend among modem cities because of the limit of horizontal land use, the rise of land value, the diversification of human desire, etc. Thus, the basement of building and the subway station have deepened. It calls our attention to safety about evacuation from the underground space to the ground. Until now, the study about crowding walk in stairs has been progressed, focusing on the crowding walk that is going down the stairs, and there is no study about crowding walk that is going up the stairs. This study measured walking pace by crowd density that is going up the stairs in the subway station stairs making one-way movement of crowd. The actual survey showed that the mathematical relation 'V=0.638-0.0949p' determines going up walking velocity at a gradient of $23^{\circ}$, and the mathematical relation will be 'V=0.597-0.1067p' at a gradient of $30^{\circ}$, when it is converted, based on the average walking velocity of crowd by the slope of the stairs which is recommended by Architectural Institute of Japan.

The Effect of PNF-Based Weight Support Exercise on Weight-Supporting Ability, Fear of Falling, and Stair-Walking Ability of Subacute Stroke Patients (PNF를 이용한 체중지지훈련이 아급성 뇌졸중 환자의 체중지지, 낙상에 대한 두려움 및 계단보행 기능에 미치는 영향 -증례보고-)

  • Kim, Chang-Beom
    • PNF and Movement
    • /
    • v.15 no.1
    • /
    • pp.105-113
    • /
    • 2017
  • Purpose: The purpose of this case study was to examine the effects of an intervention based on the concept of proprioceptive neuromuscular facilitation (PNF) on the weight-supporting ability, fear of falling, and stair-walking ability of stroke patients. Methods: One pretest, three intervention sessions, and one posttest were conducted. In the tests, weight-supporting ability, manual muscle strength, the fear of falling, and the time to go up and down a 'ㄱ'-shaped stair-walking machine were measured and compared. The intervention was implemented for 30 minutes per day for three days in combination with general rehabilitation. The intervention was planned and implemented based on the concept of PNF, and the goal was for the subjects, after their consent, to walk backward down the stairs. Results: After the intervention, functional improvement was seen in weight-supporting ability and the fear of falling felt when walking down the stairs. Whereas the subjects could not perform the task of walking down the stairs on the 'ㄱ'-shaped stair-walking machine in the pretest, they could perform the task in the posttest, and their stair-climbing speed was greater than before the intervention. Conclusion: This study verified that a PNF-based intervention can improve stroke patients' weight-supporting ability and stair-walking ability. Therefore, this intervention can be clinically applied to stroke patients.

A Study on Stairs Walking of a Biped Robot (이족 로봇의 계단 보행에 관한 연구)

  • Oh, Jae-Joon;Park, Sang-Su;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1764-1766
    • /
    • 2007
  • This paper aims to generate the static walking pattern of a biped robot on stairs and to show the effectiveness of the proposed algorithm using its ankle and pelvis. Differently from the previous biped robots, our biped robot has the peculiar mechanism on its ankle and pelvis. By using this mechanism, we can reduce the load in the knee when a biped robot ascends the stairs. This means that a biped robot can climb up a higher step. The stairs walking trajectory that is separated into a ankle trajectory and a pelvis trajectory is generated by cubic spline interpolation. Finally, we confirm the feasibility of the proposed algorithm through the computer simulation and the real walking experiment.

  • PDF

Comparison of Muscle Activity with Lower Extremity during Stairs and Ramp Climbing of Old Adults by EMG (근전도를 이용한 노인의 계단과 경사로 오르기 시하지 근활성도 비교)

  • Han, Jin-Tae;Gong, Won-Tae;Lee, Yun-Seob
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Purpose: The purpose of this study was to investigate change of muscle activities during level walking, stairs and ramp climbing in old adults. Methods: Twelve old adults were recruited and agreed this study. Muscle activity was measured by MP150 system (BIOPAC System Inc., Santa Barbara, USA). Statistical analysis was used one-way ANOVA to know the difference according to gait conditions (level walking, stairs and ramp ascending) Results: In stance phase, muscle activities of low extremities with old adults were generally significant difference in ramp ascending. In swing phase, rectus femoris and biceps femoris activity in old adults generally more increased during stairs ascending and tibialis anterior and gastrocnemius activity in old adults generally increased during ramp ascending. Conclusion: These results indicate that stair and ramp climbing is different muscle recruit pattern to level walking.

  • PDF

Optimal Trajectory Generation for Biped Robots Walking Up-and-Down Stairs

  • Kwon O-Hung;Jeon Kweon-Soo;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2006
  • This paper proposes an optimal trajectory generation method for biped robots for walking up-and-down stairs using a Real-Coded Genetic Algorithm (RCGA). The RCGA is most effective in minimizing the total consumption energy of a multi-dof biped robot. Each joint angle trajectory is defined as a 4-th order polynomial of which the coefficients are chromosomes or design variables to approximate the walking gait. Constraints are divided into equalities and inequalities. First, equality constraints consist of initial conditions and repeatability conditions with respect to each joint angle and angular velocity at the start and end of a stride period. Next, inequality constraints include collision prevention conditions of a swing leg, singular prevention conditions, and stability conditions. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot model that consists of seven links in the sagittal plane. The optimal trajectory is more efficient than that generated by the Modified Gravity-Compensated Inverted Pendulum Mode (MGCIPM). And various trajectories generated by the proposed GA method are analyzed from the viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Stairs Walking of a Biped Robot (2족 보행 로봇의 계단 보행)

  • 성영휘;안희욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • In this paper, we introduce a case study of developing a miniature humanoid robot which has 16 degrees of freedom, 42 cm heights, and 1.5kg weights. For easy implimentation, the integrated RC-servo motors are adopted as actuators and a digital camera is equipped on its head. So, it can transmit vision data to a remote host computer via wireless modem. The robot can perform staircase walking as well as straight walking and turning to any direction. The user-interface program running on the host computer contains a robot graphic simulator and a motion editor which are used to generate and verify the robot's walking motion. The experimental results show that the robot has various walking capability including straight walking, turning, and stairs walking.

  • PDF

Analysis of Muscle Activity with Lower Extremity during Stairs and Ramp Ascending of Hemiplegic Patients (편마비 환자의 계단과 경사로 오르기 동안 하지의 근 활성도 분석)

  • Park, Seung-Kyu;Cheon, Dong-Whan
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.4
    • /
    • pp.247-252
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the change of muscle activities during level walking, stairs and ramp climbing in hemiplegic patients. Methods: Eight hemiplegic patients were recruited and agreed to participate in this study. Muscle activity was measured by MP100 system (BIOPAC System Inc., Santa Barbara, CA, USA). Statistical analysis was used as a one-way repeated measure of ANOVA to know the difference according to the gait conditions (level walking, stairs and ramp ascending). Results: In the swing phase, muscle activity of rectus femoris muscle, with the side lower extremities affected, were generally significantly different in the stair and ramp ascending. In addition, biceps femoris muscle with unaffected side lower extremity was generally significantly different in the ramp ascending. In the swing phase, muscle activity of tibialis anterior muscle with unaffected side lower extremities was generally showed a significant difference in the ramp ascending. In the stance phase, climbing stairs and ramps showed an increase in the muscle activities. Further, climbing the stairs increased muscle activities of the gastrocnemius muscle. Conclusion: These findings indicate that compared with the level walking climbing stairs, ramps and muscle activities of lower extremity during each showed different results. It can be seen that in accordance with the terms of gait are different muscles group recruitment.

The Theta Analysis on the Components of Ground Reaction Force According to the Ground Conditions During Gait (보행 시 지면조건에 따른 지면반력 성분의 세타 분석)

  • Ryew, Che-Cheong;Hyun, Seung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the theta on the components of ground reaction force according to the ground conditions during gait. Method : Six healthy women(mean age: 22 yrs, mean height: $166.14{\pm}2.51cm$, mean body weights: $56.61{\pm}4.58kg$) participated in this study. The medial-lateral GRF(Fx 1), anterior-posterior GRF(Fy 1, Fy 2), vertical GRF(Fz 1, Fz 2, Fz 3), and impact loading rate were determined from time function and frequency domain. Also, GRF theta were time function and forces. Results : Fx 1, Fy 1 and Fy 2 of stair descending showed significant statistically higher forces than that of level walking, and ascending. Fz 1 of stairs descending showed significant statistically higher forces than that of level walking and stairs ascending(theta $88.62^{\circ}$). Also, Fz 2 of level walking showed significant statistically higher forces than that of stairs ascending and descending(theta $65.78^{\circ}$). Fz 3 of stairs ascending showed significant statistically higher forces than that of level walking and stairs descending($65.26^{\circ}$). Impact loading rate of stairs descending showed significant statistically higher forces than that of level and ascending walking. The GRF showed similar correlation with GRF theta(r=.603) according to the ground conditions during gait. Conclusion : These results suggest that the GRF theta can be used in conjunction with a gait characteristics, prediction of loading rate and dynamic stability.