• Title/Summary/Keyword: stainless steel sludge

Search Result 14, Processing Time 0.024 seconds

Recycling of Stainless Steel Grinding Sludge

  • Shimizu, Toru;Hanada, Kotarou;Adachi, Satoru;Katoh, Masahito;Hatsukano, Kanichi;Matsuzaki, Kunio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.95-96
    • /
    • 2006
  • Stainless steel sludge is generated as a waste in the grinding process, and the possibility of recycling stainless steel is considered here. In this study, we considered the possibility of using the stainless steel sludge as metal powder for MIM or raw material for metal foam. For the MIM process, the metal powder will need some improvement, and flotation and spheroidizing processes of the sludge are necessary. For fabrication of the metal foam, untreated sludge can be used, and steel foam about 90% porosity is produced.

  • PDF

Magnetic Abrasive Polishing for Internal Face of Stainless Steel Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam;Soh, Dea-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.77-80
    • /
    • 2004
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel (STS304) tube applying magnetic abrasive polishing. Either white alumina (WA) or green carborundum (GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than 40% of improvement of surface roughness was achieved when WA grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with WA or GC grains.

  • PDF

Preparation of Calcium Sulfate Hemihydrate Using Stainless Refinery Sludge and Waste Sulfuric Acid

  • Eun, Hee-Tai;Ahn, Ji-Whan;Kim, Hwan;Kim, Jang-Su;Sung, Ghee-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.432-436
    • /
    • 2001
  • In this study, calcium sulfate(gypsum) powder was obtained using waste sulfuric acid and stainless refinery sludge by- produced from chemical reagent and the iron industry, by the neutralization of waste sulfuric acid. As variables for the experiment the mole ratio of the H$_2$SO$_4$ : Ca(OH)$_2$, the pH, the reaction temperature and time, the amount of catalyst were used. The crystal shape and microstructure of obtained powder were observed by XRD and SEM, and the thermal property was investigated by DTA. As the NaCl is added 0~20wt% as a catalyst to the H$_2$SO$_4$ : Ca(OH)$_2$, system it can be found that the crystal shape goes through the processes as follows : gypsum dihydratlongrightarrowgypsum hemihydrate+gypsum dihydratelongrightarrowgypsum hemihydrate. And gypsum hemihydrate is $\beta$-type as the result of DTA. As waste sulfuric acid and stainless refinery sludge were used, the pH of reacted solution (which was 0.8) was rapidly raised up to 8~9 by the addition of stainless sludge and gypsum dihydrate was produced as a by-product. Therefore, it was found that stainless refinery sludge is sufficiently applicable for the neutralization of waste sulfuric acid.

  • PDF

Magnetic Abrasive Polishing for Internal Face of Seamless Stainless Steel Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.23-27
    • /
    • 2007
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel tube applying magnetic abrasive polishing. Either white alumina grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than 40% of improvement of surface roughness was achieved when grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with white alumina grains.

Magnetic Abrasive Polishing for Internal Face of Seamless Stainless Steel Tube Using Sludge Abrasive Grain (슬러지 연마입자를 이용한 이음매 없는 스테인리스강 튜브내면의 자기연마)

  • Kim, Hee-Nam;Yun, Yeo-Kwon;Kim, Sang-Baek;Choi, Hee-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.151-157
    • /
    • 2004
  • In this paper deals with behavior of the magnetic abrasive using sludge on polishing characteristics in a new internal finishing of seamless stainless steel tube applying magnetic abrasive polishing. The magnetic abrasive using sludge-abrasive grain WA and GC used to resin bond fabricated low temperature. And sludge of magnetic abrasive powder fabricated that sludge was crused into 200 mesh. The previous research have made an experiment in the static state the movement of magnetic abrasive grain is nevertheless in the dynamic state. In this paper, We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.

A Study on Magnetic Abrasive using Sludge

  • Kim, Hee-Nam
    • Journal of the Speleological Society of Korea
    • /
    • no.82
    • /
    • pp.8-12
    • /
    • 2007
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel tube applying magnetic abrasive polishing. Either green carborundum(GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than 38% of improvement of surface roughness was achieved when grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with green carborundum grains.

Recovery of Heavy-Metallic Components from a Waste Electro-polishing Solution of 316L Steel by the Solar Cell Electricity (태양전지 전력을 이용한 316L강의 전해연마 폐액 중 중금속 성분의 회수)

  • Kim, Ki-Ho;Jang, Jung-Mok
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Recovery of heavy-metallic component from a waste solution of factory was undertaken by the solar cell electricity. The solution was obtained from an electrolytic etching process of 316L stainless steel. The electrolysis of the solution for recovery of heavy metallic components was made with platinum plated titanium mesh anode and copper plate cathode. Analysis for the solution and electro-winned materials were made by EDS, XRD and SEM. Iron, chromium, and sulfur components were recovered on the cathode from the solution. Result of EDS analysis for the electro-winned materials revealed that some metal oxide were contained in the recovered material. The recovered materials were expected to have metallic form only by the electrolysis, but metal compounds were contained because of weak solar cell power. Nickel and manganese component in the solution doesn't recovered by this electrolysis process, but they made a sludge with phosphoric acid in the solution.

Magnetic Abrasive Polishing for Internal Face of STS Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam;Soh, Dea-Wha;Hong, Sang-Jeen;Lee, Byung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2005
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel (STS304) tube applying magnetic abrasive polishing. Either white alumina (WA) or green carborundum (GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than $40\%$ of improvement of surface roughness was achieved when WA grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with WA or GC grains.

Recovery of Acids and Valuable Metals from Stainless-Steel Pickling Acids (스텐레스 산세폐액으로부터 산 및 유가금속의 회수)

  • 김성규;이화영;오종기;이동휘
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • The process for recovery of acids and valuable metals such as nickel and chromium from the stainless-steel pickling acids has been developed vased on the use of solvent extraction technique. Until now, several processes for the treatment of waste acids were already developed in such countries as Japan, Swden and Canada. Those methods are, however, forcussed on the recovery of acids from them discarding the metals included in them as the hydroxides sludge. In the present work, the recovery of nickel and chromium in addition to nitric acid and hydrofluoric acid has been aimed so as to recycle them to the stainless-steel pickling lines and also to minimize the amount of sludge generated during the treatment of waste acids. The establishment of the process to recover the acids has been carried out based on the solvent extraction with TBP. The iron was eliminated from the waste solutions by precipitating in the form of hydroxide through the adjustment of pH with calcined limestone and the selective extration of chromium and nickel from the resultant solutions has been conducted by using D2EHPA as extractant.

  • PDF

Wet Etching of Stainless Steel Foil by Aqueous Ferric Chloride Solution (염화제이철 수용액에 의한 스테인레스 강판의 식각에 관한 연구)

  • Lee, Hyung Min;Park, Mooryong;Park, Gwang Ho;Park, Chinho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • Wet chemical etching of stainless steel foil by aqueous ferric chloride solution was investigated in this study. Effects of various process parameters (e.g. etchant agitation rate, etchant temperature, $Fe^{3+}$ ion concentration, free HCl concentration, specific gravity, etc.) on the etch rate was first studied, and it was found that the etch rate of AK (aluminum-killed) steel, chromium metal and stainless steel (STS430J1L alloy) follows the pseudo-first order reaction equation. When the fatigue ratio of etchant was kept under 16%, sludge was not formed in the solution, and the etched surface showed smooth roughness. The etch rate decreases as Baume of etchant increases, but the effect of free HCl concentration on the etch rate turned out to be minimal. Experimental data were compared with the calculated results from modeled equation, showing very good agreement.