• Title/Summary/Keyword: stain- less steel substrate

Search Result 2, Processing Time 0.02 seconds

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Charge/Discharge Characteristics of $SnO_2$ thin film as an anode of thin film secondary battery for microelectromechanical system device (Microelectromechnical system 소자를 위한 박막형 2차전지용 $SnO_2$ 음극박막의 충방전 특성 평가)

  • 남상철;조원일;전은정;신영화;윤영수
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • $SnO-2$ thin films for thin film secondary battery anode were deposited n glass substrate with stain-less steel collector and charge/discharge experiments were conducted to investigate feasibility of $SnO-2$ thin film as a new anode material. The as-deposited films were pure $SnO-2$ phase which is not related to deposition condition. The grain size on the surface of as-deposited films increased with increase of oxygen partial pressure. However, the grain size did not show any change above oxygen partial pressure of 80:20. The surface roughness of the as-deposited films increased after decreasing because of resputtering effect of oxygen negative ion in plasma. All films showed typical $SnO-2$ anode characteristics which has a side effect at the first cycle, which is not related to the deposition condition. The charge/discharge experiments of 200cycles indicated that capacity of $SnO-2$ films depended on oxygen contents and surface roughness. The cycle characteristics was determined by initial charge/discharge reaction. The $SnO-2$ film with low initial capacity showed more stable cycle characteristics than film with high initial capacity.

  • PDF