• Title/Summary/Keyword: stacked graphene platelets

Search Result 1, Processing Time 0.013 seconds

Architecture and Transport Properties of Membranes out of Graphene (그래핀에 기초한 막의 구조와 물질 전달 성질 개관)

  • Buchheim, Jakob;Wyss, Roman M.;Kim, Chang-Min;Deng, Mengmeng;Park, Hyung Gyu
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.239-252
    • /
    • 2016
  • Two-dimensional materials offer unique characteristics for membrane applications to water technology. With its atomic thickness, availability and stackability, graphene in particular is attracting attention in the research and industrial communities. Here, we present a brief overview of the recent research activities in this rising topic with bringing two membrane architecture into focus. Pristine graphene in single- and polycrystallinity poses a unique diffusion barrier property for most of chemical species at broad ambient conditions. If well designed and controlled, physical and chemical perforation can turn this barrier layer to a thinnest feasible membrane that permits ultimate permeation at given pore sizes. For subcontinuum pores, both molecular dynamics simulations and experiments predict potential salt rejection to envisage a seawater desalination application. Another novel membrane architecture is a stack of individual layers of 2D materials. When graphene-based platelets are chemically modified and stacked, the interplanar spacing forms a narrow transport pathway capable of separation of solvated ions from pure water. Bearing unbeknownst permeance and selectivity, both membrane architecture - ultrathin porous graphene and stacked platelets - offer a promising prospect for new extraordinary membranes for water technology applications.