• 제목/요약/키워드: stack operation

검색결과 277건 처리시간 0.021초

1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전 (Design and Self-sustainable Operation of 1 kW SOFC System)

  • 이태희;최진혁;박태성;유영성;남석우
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

5kW급 고분자 연료전지 시스템의 개발과 운전 (Development and Operation of 5kW-Class Polymer Electrolyte Membrane Fuel Cell System)

  • 전영갑;백동현;전광선;김창수;신동렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1876-1878
    • /
    • 1999
  • Developed was a 5kW-class polymer electrolyte membrane fuel cell(PEMFC) system comprised of fuel cell stack, fuel processing, thermal and water management subsystems and ancillary equipments. Several large single cells have been fabricated with different gas flow field patterns and paths, and the gas flow field pattern for the stack has been determined based on the single cell performance of thin film membrane electrode assembly (MEA). The PEMFC stack was consisted of 100 cells with an electrode area of $300cm^2$, having serpentine flow pattern. Fuel processing was developed including an autothermal methanol reformer and two preferential CO oxidation reactors. The fuel processing was combined to PEMFC operation system consisted of air compressor and thermal and water management subsystems. The PEMFC stack showed performance of 5kW under the supply of $H_2$ and air, but its performance was lowered to 3.5kW under the supply of reformed gas.

  • PDF

군 운용환경에서 이차전지 충전을 위한 경량화 DMFC 시스템 개발 (Development of Lightweight DMFC System for Charging Secondary Battery in Military Operational Environment)

  • 이수원;곽건희;노정호;조영래;김도연;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.481-491
    • /
    • 2017
  • In this study, we developed 300 W lightweight DMFC system for charging secondary battery in small unit military operation. In order to reduce the volumetric shape and weight of the system considering the environment of the individual soldier's, the arranging of system components has been optimized. A metal bipolar plates made of STS-470FC have been implemented to the DMFC stack to meet the weight demand of the system. As a result of the performance test of the stack, the target value was satisfied by outputting 561 W exceeding 24% of the stack output 450 W required to output 300 W required for the entire system. Moreover, 2,655 hours exceeding 1,000 hours also has been satisfied. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software.

용융탄산염형 연료전지 발전시스템 구성 및 운전 (Constitution and Operation of a Molten Carbonate Fuel Cell System)

  • 안교상;김동형;설진호;임희천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.100-103
    • /
    • 1997
  • Korea Electric Power Corporation (KEPCO) started a fuel cell project to develop alternative sources of electric power because of the rapid increase in power demand and global environmental problems. For the development of a molten carbonate fuel cell (MCFC), KEPCO started the project in 1993 to develop a 2 kW MCFC system and finished it at the end of 1996. In this project, $ASPEN^+$ was utilized to design the 2 kW MCFC generation system. Based on this simulation, a power generation system was designed and installed for operation and a long term test of internally manifolded 2 kW class MCFC stack. This stack has 20 cells with an effective electrode area of $1000\;cm^2$. It was run at 0.84 V and $150\;mA/cm^2$ and was operated for more than 3,250 hours continuously. This paper describes the system configuration and its control and measurement units. An analysis of the stack performance, the effect of gas utilization ratio, and the stack performance requirements are also discussed.

  • PDF

1 kW 고체산화물 연료전지 스택의 내부개질 특성 연구 (Study on Internal Reforming Characteristic of 1 kW Solid Oxide Fuel Cell Stack)

  • 최영재;안진수;이인성;배홍열;문지웅;이종규
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.377-383
    • /
    • 2017
  • This paper presents the performance characteristics of a 1 kW solid oxide fuel cell (SOFC) stack under various internal reforming and fuel utilization conditions. The Research Institute of Industrial Science & Technology (RIST) developed the 9-cell stack using a $20{\times}20cm^2$ anode supported planar cell with an active area of $324cm^2$. In this work, current-voltage characteristic test, fuel utilization test, continuous operation, and internal reforming test were carried out sequentially for 765 hours at a furnace temperature of $700^{\circ}C$. The influence of fuel utilization and internal reforming on the stack performance was analyzed. When the 1 kW stack was tested at a current of 145.8 A with a corresponding fuel utilization of 50-70% (internal reforming of 50%) and air utilization of 27%, the stack power was approximately 1.062-1.079 kW. Under continuous operation conditions, performance degradation rate was 2.16%/kh for 664 hours. The internal reforming characteristics of the stack were measured at a current of 145.8. A with a corresponding fuel utilization of 60-75%(internal reforming of 50-80%) and air utilization of 27%. As fuel utilization and internal reforming ratio increased, the stack power was decreased. The stack power change due to the internal reforming ratio difference was decreased with increasing fuel utilization.

2 모듈 스택을 이용한 SOFC 시스템 운전결과 (Operation Results of the SOFC System Using 2 Sub-Module Stacks)

  • 이태희
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.405-411
    • /
    • 2010
  • A 5kW class SOFC cogeneration system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a stack, a fuel reformer, a catalytic combustor, and heat exchangers. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. A 5kW stack was designed to integrate 2 sub-modules. In this paper, the 5kW class SOFC system was operated using 2 short stacks connected in parallel to test the sub-module and the system. A short stack had 15 cells with $15{\times}15 cm^2$ area. When a natural gas was used, the total power was about 1.38 kW at 120A. Because the sub-modules were connected in parallel and current was loaded using a DC load, voltages of sub-modules were same and the currents were distributed according to the resistance of sub-modules. The voltage of the first stack was 11.46 V at 61A and the voltage of the second stack was 11.49V at 59A.

장기운전에 의한 직접메탄올 연료전지 스택의 성능 열화 분석 (Diagnosis of Performance Degradation of Direct Methanol Fuel Cell Stack after Long-Term Operation)

  • 김상경;현민수;이병록;정두환;백동현;임성엽
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.775-780
    • /
    • 2011
  • 50 $cm^2$의 활성면적을 가진 셀을 이용하여 5-셀 DMFC 스택을 제작하고 4 A의 부하로 4,000 시간 운전한 후 성능감소 및 성능 감소 원인을 분석하였다. 4,000 시간 운전 후 10 A에서 스택의 전력 밀도가 28.7% 감소하였으며 다섯개의 셀 중 두 개는 거의 성능저하가 일어나지 않았고 두 개는 약 40%의 성능 저하, 한 개는 약 60%의 성능 저하를 보였으며 각 셀별 성능저하의 정도의 차이는 스택 내에서의 위치와 상관관계가 없었다. 스택 내의 다섯 셀 중 가장 성능감소가 심하였던 셀의 경우 연료극 촉매층의 Pt 입자 크기가 증가하였으며 연료가 들어가는 쪽의 Pt 입자의 크기 증가가 더 심하였다. 그러나 4,000 시간 장기운전 후 공기극 촉매층에서는 Pt 입자 크기의 변화는 거의 없었다. 스택 내의 모든 셀에서 4,000 시간 운전 후 연료극 촉매에서 공기극 촉매로의 루테늄의 크로스오버가 SEM-EDX로 관찰되었으며 특히 성능감소가 심하였던 셀의 경우 공기극 촉매층에서 Ru/Pt의 비율이 가장 컸다.

연료전지 자동차용 스택 시스템의 열적 성능 특성에 관한 수치적 연구 (Numerical study on the thermal performance characteristics of the stack system for FCEV)

  • 이호성;이무연;원종필
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.3708-3713
    • /
    • 2015
  • 본 연구의 목적은 연료전지 자동차의 스택 시스템의 열적 특성을 파악하기 위하여 상용 수치 해석 프로그램을 이용하여 열전달 성능을 해석적으로 고찰하였다. 이를 위하여 연료전지 자동차가 일반도로 및 등판도로 등 주행 특성에 따른 스택 열관리 시스템의 냉각 특성과 에어컨의 작동 여부 등 운전 특성에 따른 스택 열관리 시스템의 냉각 특성을 고찰하였다. 스택 라디에이터로 유입되는 공기 유속이 증가함에 따라 모든 냉각수 유량조건에서 열전달 성능은 향상되었다. 공기 유속이 2 m/s에서 10 m/s로 증가함에 따라 스택 라디에이터의 열전달 성능은 냉각수 유량 20 l/min에서 105.3% 증가하였고, 냉각수 유량 120 l/min에서 221.3% 증가하였다. 스택 라디에이터는 가혹조건인 등판 각도 8% 및 속도 50 km/h에서 냉각수 입구 온도차 $9.45^{\circ}C$로 일반조건인 등판 각도 0% 및 속도 120 km/h에서 냉각수 입구 온도차인 $5.1^{\circ}C$보다 85.3% 증가했다. 또한, 연료전지 자동차가 가혹조건인 등판 주행시 에어컨 시스템을 작동할 경우 스택의 안정적 작동을 허용하는 한계 온도인 $70^{\circ}C$를 초과할 수 있다.

계통 연계형 인버터의 무효전력 공급을 고려한 Stack 설계 (The Stack Design Considering The Reactive Power Supply of Grid-Connected Inverter)

  • 고광수;오필경;김희중;김영민
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.453-454
    • /
    • 2016
  • The ESS(Energy Storage System) connected with distributed generation is drawing attention due to improving the quality load leveling, peak shaving for enhancing reliability of the power grid. The grid-connected inverter makes frequency adjustment to the active power's charge discharge according to the load variation. In addition, the inverter is possible to act as a reactive power compensation device to eliminate harmonic operates as power factor change inhibiting, anti-transient voltage fluctuation, active filter. In this paper, we propose a design method of igbt stack considering the reactive power supply capacity to improve the quality and reliability of the inverter. Moreover, the grid-connected inverter considering the four-quadrant rated operation designed stack and verified the feasibility of the design through a thermal analysis.

  • PDF

공급유량 및 스택온도의 변이에 따른 200W급 PEM형 연료전지의 전기적 성능특성 (Electrical Performance Characteristics of 200W PEM-Type Fuel Cells with Variations on Mass Flow Rate and Stack Temperature)

  • 홍경진;박세준;최용성;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.563-567
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are 1~8L/min on $H_2$ volume and $20{\sim}70^{\circ}C$ on stack temperature.