• Title/Summary/Keyword: stack operation

Search Result 277, Processing Time 0.025 seconds

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF

A Study on the Safety of Carbon Manufacturing By-product Gas Emissions (카본제조 부생가스 배출 안전성에 관한 연구)

  • Joo, Jong-Yul;Jeong Phil-Hoon;Kim, Sang-Gil;Sung-Eun, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.99-106
    • /
    • 2024
  • In the event of an emergency such as facility shutdown during process operation, the by-product gas must be urgently discharged to the vent stack to prevent leakage, fire, and explosion. At this time, the explosion drop value of the released by-product gas is calculated using ISO 10156 formula, which is 27.7 vol%. Therefore, it does not correspond to flammable gas because it is less than 13% of the explosion drop value, which is the standard for flammable gas defined by the Occupational Safety and Health Act, and since the explosion drop value is high, it can be seen that the risk of fire explosion is low even if it is discharged urgently with the vent stock. As a result of calculating the range of explosion hazard sites for hydrogen gas discharged to the Bent Stack according to KS C IEC 60079-10-1, 23 meters were calculated. Since hydrogen is lighter than air, electromechanical devices should not be installed within 23 meters of the upper portion of the Bent Stack, and if it is not possible, an explosion-proof electromechanical device suitable for type 1 of dangerous place should be installed. In addition, the height of the stack should be at least 5 meters so that the diffusion of by-product gas is facilitated in case of emergency discharge, and it should be installed so that there are no obstacles around it.

Manufacture and Evaluation of Small Size PEMFC Stack Using Carbon Composite Bipolar Plate (탄소복합소재 분리판을 이용한 소형 고분자전해질 연료전지 스택 제작 및 성능분석)

  • Han, C.;Choi, M.;Lee, J.J.;Lee, J.Y.;Kim, I.T.;An, J.C.;Shim, J.;Lee, H.K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • Small size polymer electrolyte membrane fuel cell (PEMFC) stacks were prepared using carbon composite and graphite bipolar plates and their performances were evaluated on reactant gas and operating time. In comparison to single cell and stack, it was identified that home-made bipolar plate was well-designed to maximize stack performance as high as that of single cell. During long-term operation, the performances of stacks using two different kinds of bipolar plates were compared. The decrease of performance in both stacks was accelerated with increasing load current. It was observed from stack test that the stack performance using carbon composite bipolar plate was very similar to that using graphite bipolar plate.

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

Design of RISC-based Transmission Wrapper Processor IP for TCP/IP Protocol Stack (TCP/IP프로토콜 스택을 위한 RISC 기반 송신 래퍼 프로세서 IP 설계)

  • 최병윤;장종욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1166-1174
    • /
    • 2004
  • In this paper, a design of RISC-based transmission wrapper processor for TCP/IP protocol stack is described. The processor consists of input and output buffer memory with dual bank structure, 32-bit RISC microprocessor core, DMA unit with on-the-fly checksum capability, and memory module. To handle the various modes of TCP/IP protocol, hardware-software codesign approach based on RISC processor is used rather than the conventional state machine design. To eliminate large delay time due to sequential executions of data transfer and checksum operation, DMA module which can execute the checksum operation along with data transfer operation is adopted. The designed processor exclusive of variable-size input/output buffer consists of about 23,700 gates and its maximum operating frequency is about 167MHz under 0.35${\mu}m$ CMOS technology.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

The operation algorithm of the 1kW fuel cell-battery hybrid power system (1kW급 연료전지-배터리 복합 전원 시스템의 운용 알고리즘 구현)

  • Park, Jinju;Chae, Suyong;Song, Yujin;Han, Soobin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.95-96
    • /
    • 2013
  • In this paper, an operation algorithm for the fuel cell-battery hybrid power system is proposed. As the output current slope of the fuel cell is normally limited to protect the fuel cells' defection, efficient power distribution algorithm between the fuel cell and battery is very important for the successful hybrid control operation. For the experimentation, a 1kW dc-dc converter with 500W fuel cell stack and 1kWh Li-polymer battery is implemented.

  • PDF

OPERATION ALGORITHMS FOR A FUEL CELL HYBRID ELECTRIC VEHICLE

  • PARK C.;KOOK K.;OH K.;KIM D.;KIM H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • In this paper, operation algorithms are evaluated for a fuel cell hybrid electric vehicle (FCHEV). Power assist, load leveling and equivalent fuel algorithm are proposed and implemented in the FCHEV performance simulator. It is found from the simulation results that the load leveling algorithm shows poor fuel economy due to the system charge and discharge efficiency. In the power assist and equivalent fuel algorithm, the fuel cell stack is operated in a relatively better efficiency region owing to the battery power assist, which provides the improved fuel economy.

Study of Operation Strategy for Hybrid PEM Fuel Cell and Supercapacitor (고분자 전해질 연료전지와 슈퍼캐패시터 하이브리드 시스템의 운전 전략에 관한 연구)

  • Park Kwang-Jin;Ji Hyun-Jin;Bae Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.756-763
    • /
    • 2006
  • PEMFC has several technical problems such as water management, long term stability and performance degradation as. PEMFC has been studied not only to solve water management, but also to generate power in stable manner to system by using a hybrid system with auxiliary energy storage device. The purpose of this study is to couple PEMFC with supercapacitor to make a hybrid system and to design and test control strategies for stable power generation in case of changing output power. The polarization curve and dynamic behaviors while changing power were investigated to find out characteristics of PEMFC stack. A DC/DC converter was fabricated in order to increase fuel cell and supercapacitor voltage and to charge supercapacitor. We found that the operation strategy 2 was recommended to the system because of solving water management problem and increasing the dynamic behavior.

Pyrolysis And Melting System

  • Uno, Susumu
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.84-90
    • /
    • 2002
  • In 1995 we licensed pyrolysis gas melting technology of indirect heating type (using kiln) from Siemens AG, and built its demonstration facility in 1998 at Clean-Park-East of Fukuoka City to demonstrate the technology for municipal solid waste (MSW). In 1997 we were awarded an order from Kanemura Co., Ltd. to build a pyrolysis gas melting and power generation plant, specifically for treating residue from car shredder. The latter was launched in 1998, and is currently in commercial operation. The operation of these plants have proven the following facts. (1) The system is capable for performing a stable operation with a wide variety of waste. (2) Pyrolysis is achieved steadily regardless of the variation in the quality of waste. (3) The system can be operated under low excess air ratio (1.2∼1.3). (4) The concentration of dioxins at the furnace outlet is 0.062ng-TEQ/㎥$\_$N/, and 0.002ng-TEQ/㎥$\_$N/, at the stack. (the value is corrected to dryO$_2$ 12%) (5) The purity of recovered metals exceeds 90%.

  • PDF