• Title/Summary/Keyword: stack operation

Search Result 277, Processing Time 0.029 seconds

The Study of the IGBT and Stack Parallel Operation for the 1.5MVA Medium Power Inverter (1.5MVA급 중용량 인버터용 IGBT 및 Stack 병렬 운전 연구)

  • Park Geon-Tae;Jung Ki-Chan;Kim Yeon-Dal;Jung Myung-Kil;Kim Du-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.402-405
    • /
    • 2004
  • In this paper, the parallel operation of the IGBT and power stack for easy capacity enlargement series in the medium power capacity inverter system of the 660V voltage class is described. The parallel operation of the IGBT and power stack for 1.5MVA medium power inverter system's design is applied. The results of the parallel operation are described in this paper. The designed stack capacity for parallel operation is 800kVA class. For 1.5MVA inverter system, the 800kVA stack is applied with 2 parallel configurations. The 800kVA stack is designed with 3 parallel configurations of the IGBT Module. In this paper, the feasibility for easy capacity enlargement series in the medium power inverter by applying the parallel operation of the IGBT and power stack is verified. The experimental results show the good characteristics for the parallel operation of the IGBT and power stack.

  • PDF

Characteristics of 5 kW Class Proton-Exchange-Membrane Fuel Cell(PEMFC) Stack according to the Long-Term Operation (장기운전에 따른 5 kW급 고분자 전해질 연료전지 스택의 특성)

  • Kim, Jae-Dong;Lee, Jung-Woon;Park, Dal-Ryung
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.40-43
    • /
    • 2007
  • The performance of PEMFC stack can be improved significantly by optimizing the design and operating conditions. As a result, the performance of daily operation showed slight deviation (0.02-0.9%) after accumulated DSS operation for 500 hrs but the stack performance was stable. Therefore, it is confirmed that it would be improved the life-time of stack and operation reliability for the commercialization of PEMFC system.

  • PDF

Dead-end Mode Operation of a Large Scale PEM Fuel Cell Stack (대면적 고분자전해질 연료전지의 데드엔드 운전)

  • Jeong, Jeehoon;Shin, Hyunkhil;Han, In-Su;Seo, Hakyu;Kim, Minsung;Cho, Sungbaek;Hur, Taeuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • A Dead-end mode operation is one of the best way to maximize the gas usage rate. But, some components of fuel cell stack like gas diffusion layer(GDL) or membrane can be damaged in dead-end mode operation. In this study, a Large Scale Polymer electrolyte membrane fuel cell(PEMFC) for a dead-end operation has been developed. The stack is composed with 4 cells which has over 400cm2 of active area. Hydrogen is used as a fuel, and oxygen is used as a oxidant. The dead-end operation performance was evaluated by a long-term dead-end mode operation. The fuel cell stack is operated over 1,500 hours in dead-end mode operating fuel cell test station. And the performance change of the fuel cell stack was investigated.

  • PDF

Atmospheric and Pressurized Operation of a 25 kW MCFC Stack (25 kW급 용융 탄산염 연료 전지 스택의 상압 및 가압 운전)

  • Koh, Joob-Ho;Seo, Hai-Kung;Lim, Hee-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.264-269
    • /
    • 2000
  • As a part of the ongoing effort towards commercial application of high-temperature fuel cell power generation systems, we have recently built a pilot-scale molten carbonate fuel cell power plant and tested it. The stack test system is composed of diverse peripheral units such as reformer, pre-heater, water purifier, electrical loader, gas supplier, and recycling systems. The stack itself was made of 40cells of $6000cm^2$ area each. The stack showed an output higher than 25kW power and a reliable performance at atmospheric operation. A pressurized performance was also tested, and it turned out the cell performance increased though a few cells have shown a symptom of gas crossover. The pressurized operation characteristics could be analyzed with numerical computation results of a stack model.

  • PDF

Constitution and Operation of the 25 kW Molten Carbonate Fuel Cell Power Generation System for Power Utility (25 kW급 전력사업용 MCFC 발전시스템 구성 및 운전평가)

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.687-689
    • /
    • 2000
  • Molten Carbonate Fuel Cell (MCFC) with high electrical efficiency and low environmental effect has been developed for the commercial application of power generation fields. Recently we have built a 25 kW molten carbonate fuel cell power generation system and tested it. The MCFC system is composed of diverse peripheral units such as reformer, pre-heater, water purifier. electrical loader, gas supplier, and recycling systems. The stack itself was made of 40 cells of $6.000 cm^2$ area each. The stack showed an output of 28.6 kW power and a reliable performance at atmospheric operation. while in pressurized operation the stack showed an output 25.6 kW lower than the atmospheric operation. The reason of lower performance of pressurized operation was caused from a gas cross over shown in few cells in the stack.

  • PDF

The Operating Results of the 75kW MCFC Stack (75kW 용융탄산염 연로전지[MCFC] 스택 운전 결과)

  • Kang, Seung-Won;Kim, Beom-Joo;Kim, Do-Hyeong;Lee, Jung-Hyun;Kim, Eui-Hwan;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.202-207
    • /
    • 2009
  • A 75kW MCFC stack with the reactive area of 9,600cm$^2$ has been operated and validated in Boryeong thermal power plant. The 75kW MCFC stack was installed at the end of November 28, 2008 and started initial operation on December 23, 2008 after pretreated for about 20 days. At initial load operation, the stack showed the Open Circuit Voltage of 137V, which approaches the theoretical value. At the early stage of rated power operation, the stack displayed the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. This stack has been operated for 2,890 hours until April, 2009. In addition, the operation time of rated power records 1890 hours. This Operating result is scheduled to be reflected the design of l25kW stack.

Operation Characteristics and Analysis of Temperature Gradients in a 5-kW Molten Carbonate Fuel Cell Stack (5 kW 용융탄산염 연료전지 스택내 운전특성 및 온도 변화 해석)

  • Lim, Hee-Chun;Koh, Joon-Ho;Ryu, Jeong In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.107-118
    • /
    • 1999
  • A 5-kW MCFC stack with $3,000cm^2$ electrode area was tested to investigate cell performance and operation characteristics. The stack performance was evaluated based on electrical output and I-V change. The stack showed high cell performance (7.6 kW) than the design performance and operated for more than 5,760 hours, but a significant temperature gradient inside the stack was observed. A 3-dimensional mathematical model for molten carbonate fuel cell (MCFC) was developed for the purpose of simulation of stack performance during the operation. The model was solved using PHOENICS, a computational fluid dynamics (CFD) code. The simulation result demonstrated a close prediction of the temperature gradient and stack performance.

  • PDF

Evaluation of Long Term Operation of Cross-flow Molten Carbonate Fuel Cell Stack (교차류형 100W급 용융탄산염 연료전지 스택 장기운전평가)

  • Lim, H.C.;Seol, J.H.;Ryu, C.S.;Lee, C.W.;Hong, S.A.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • A 100kW class stack consisting of 10 molten carbonate fuel cells has been fabricated. Internally manifold stack has been tested for endurance. Each cell in the stack had an electrode area of $100cm^2$ and reactant gases were distributed in each cells in a cross-flow configuration. Initial and long term operation performance of the stack was investgated as a function of gas utilization using a specially designed small scale stack test facility. It was possible to have a stack with an output of more than 100W using an anode gas of 72% $H_2/18%$ $CO_2/10%H_2O$ and cathode gas of 33% $O_2/67%$ $CO_2$ and 70% Air 30% $CO_2$. The output and voltage of the stack at a current 15A($150mA/cm^2$) and gas utilization of 0.4 showed 125.8W and 8.39V respectively by elapsed time of 310 hours operation. In long term operation characteristics, the voltage drop of 52.4mV/1000hour was observed after more than 1,840 hours operation. Among the voltage drop, the OCV loss was highest than other voltage loss such as internal resistance and electrode polarization. Non uniformity of 2voltages and degradation of cell voltage in the stack was observed in according to changing the utilization rate after a long term operation. Further work for increasing the performance prolonging the life of the stack are required.

  • PDF

The Effects of the Inclination on the Performance of dead-end operating PEM Fuel Cell (고분자 연료전지의 데드엔드 운전 시 기울임에 따른 성능 변화)

  • Jeong, Jee Hoon;Kho, Back Kyun;Han, In-Su;Shin, Hyun Khil;Hur, Tae Uk;Cho, Sung Baek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • In automotive applicatons or water vehicles, the polymer electrolyte membrane fuel cell(PEMFC) stack is keep moving while their operation. Especially the inclination environment can take a effect to fuel cell stack perfromance, because this condition can cause a bad effect to water exhaust of fuel cell stack. In this study, a large scale stack(over 100kW power) is inclined upto 30 degree in lengthwise and crosswise using stack lift equipment. And the stack is operated in 10~100% load. No significant change has appeared in crosswise inclined condition and lenthwise low angle. But in lenthwise large angle tilting condition, the fuel cell performance has significantly decreased. And this performance decrease is aggravated in low load. An active water exhaust device is applied to the stack to prevent the performance decrease. And in lenthwise large angle tilting condition, this device cause a good effect to fuel cell stack performance.

  • PDF

Operation Characteristics of 100W Class Molten Carbonate Fuel Cell Stack (100W 급 용융탄산염 연료전지 스택운전특성)

  • Lim, Hee-Chun;Lee, Chang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.94-96
    • /
    • 1994
  • To develop the 2kw class MCFC stack, preliminarly 3 cell and 10 cell stack having a $100cm^2$ effective electrode area were fabricated and tested. These stacks showed 30 W and 100 W of output respectively and average cell voltage of 0.734V at $150mA/cm^2$. The stack performance decreased with the increase of fuel utilization rate. In durability test of 10 cell stack, the performance was sharply decreased at the rate of 180mV/1000Hr during 720hours operation time.

  • PDF