• 제목/요약/키워드: stable current flowing state

검색결과 3건 처리시간 0.014초

구리 안정화재가 있는 YBCO 박막형 초전도 선재의 과전류 통전 특성 (Over-current characteristics of YBCO coated conductors having Cu stabilizer)

  • 임성우;두호익;김혜림;현옥배;손송호;임지현;황시돌;오성용;한병성
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권1호
    • /
    • pp.10-14
    • /
    • 2008
  • Differently from BSCCO tapes which are fabricated by powder-in-tube method, the coated conductors are made by the evaporation of YBCO on metal substrate. Due to this structural merit, although the coated conductors are generally used for large current transportation, they are expected to be favorable to the purpose of the fault current limitation as well. In this study, using YBCO coated conductor having copper stabilizer formed by plating technique(produced by Superpower Co.), we investigated the over-current characteristics of the coated conductor. The coated conductors had 85 A $I_c$ and 90 K $T_c$. The resistance of the conductor was 0.93 $m{\Omega}/cm$ at 300 K and 0.17 $m{\Omega}/cm$ at the temperature right above $T_c$. To the coated conductors, we applied the voltages of the range from 150 $V_{rms}$ to 230 $V_{rms}$ and measured the V-I curves using four probe method. From the results, we could analyze the electric behavior of the coated conductor in flux flow state. As the current exceed $I_c$, the currents were distributed into the superconductor and metal stabilizer. The amounts of the currents shared through both current paths were calculated under the assumption that the ,Joule heating was perfectly eliminated by $LN_2$ surrounding the conductor. Finally, the condition for the stable current flowing state which does not affect the conductor was established from the analysis on the over-current characteristics.

Neuron Circuit Using a Thyristor and Inter-neuron Connection with Synaptic Devices

  • Ranjan, Rajeev;Kwon, Min-Woo;Park, Jungjin;Kim, Hyungjin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권3호
    • /
    • pp.365-373
    • /
    • 2015
  • We propose a simple and compact thyristor-based neuron circuit. The thyristor exhibits bi-stable characteristics that can mimic the action potential of the biological neuron, when it is switched between its OFF-state and ON-state with the help of assist circuit. In addition, a method of inter-neuron connection with synaptic devices is proposed, using double current mirror circuit. The circuit utilizes both short-term and long-term plasticity of the synaptic devices by flowing current through them and transferring it to the post-synaptic neuron. The double current mirror circuit is capable of shielding the pre-synaptic neuron from the post synaptic-neuron while transferring the signal through it, maintaining the synaptic conductance unaffected by the change in the input voltage of the post-synaptic neuron.

Proposed Guidelines for Selection of Methods for Erosion-corrosion testing in Flowing Liquids

  • Matsumura, Masanobu
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.291-296
    • /
    • 2007
  • The corrosion of metals and alloys in flowing liquids can be classified into uniform corrosion and localized corrosion which may be categorized as follows. (1) Localized corrosion of the erosion-corrosion type: the protective oxide layer is assumed to be removed from the metal surface by shear stress or turbulence of the fluid flow. A macro-cell may be defined as a situation in which the bare surface is the macro-anode and the other surface covered with the oxide layer is the macro-cathode. (2) Localized corrosion of the differential flow-velocity corrosion type: at a location of lower fluid velocity, a thin and coarse oxide layer with poor protective qualities may be produced because of an insufficient supply of oxygen. A macro-cell may be defined as a situation in which this surface is the macro-anode and the other surface covered with a dense and stable oxide layer is the macro-cathode. (3) Localized corrosion of the active/passive-cell type: on a metal surface a macro-cell may be defined as a situation in which a part of it is in a passivation state and another in an active dissolution state. This situation may arise from differences in temperature as well as in the supply of the dissolved oxygen. Compared to uniform corrosion, localized corrosion tends to involve a higher wall thinning rate (corrosion rate) due to the macro-cell current as well as to the ratio of the surface area of the macro-anode to that of the macro-cathode, which may be rationalized using potential vs. current density diagrams. The three types of localized corrosion described above can be reproduced in a Jet-in-slit test by changing the flow direction of the test liquid and arranging environmental conditions in an appropriate manner.