• 제목/요약/키워드: stable cells

검색결과 967건 처리시간 0.029초

Vorinostat-induced acetylation of RUNX3 reshapes transcriptional profile through long-range enhancer-promoter interactions in natural killer cells

  • Eun-Chong Lee;Kyungwoo Kim;Woong-Jae Jung;Hyoung-Pyo Kim
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.398-403
    • /
    • 2023
  • Natural killer (NK) cells are an essential part of the innate immune system that helps control infections and tumors. Recent studies have shown that Vorinostat, a histone deacetylase (HDAC) inhibitor, can cause significant changes in gene expression and signaling pathways in NK cells. Since gene expression in eukaryotic cells is closely linked to the complex three-dimensional (3D) chromatin architecture, an integrative analysis of the transcriptome, histone profiling, chromatin accessibility, and 3D genome organization is needed to gain a more comprehensive understanding of how Vorinostat impacts transcription regulation of NK cells from a chromatin-based perspective. The results demonstrate that Vorinostat treatment reprograms the enhancer landscapes of the human NK-92 NK cell line while overall 3D genome organization remains largely stable. Moreover, we identified that the Vorinostat-induced RUNX3 acetylation is linked to the increased enhancer activity, leading to elevated expression of immune response-related genes via long-range enhancer-promoter chromatin interactions. In summary, these findings have important implications in the development of new therapies for cancer and immune-related diseases by shedding light on the mechanisms underlying Vorinostat's impact on transcriptional regulation in NK cells within the context of 3D enhancer network.

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

HSV-TK 유전자를 암호화하는 EBV 유래 플라스미드를 이용한 유전자 치료 (EBV-Based Plasmid Encoding HSV-TK for Cytocidal Gene Therapy)

  • 오상택;민경아;김종국;이숙경
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권4호
    • /
    • pp.267-272
    • /
    • 2003
  • Herpes simplex virus (HSV) thymidine kinase (TK) has been widely used for suicidal gene therapy in combination with nucleoside analogs such as ganciclovir (GCV). The use of HSV-TK is limited due to the side effect of GCV at high concentrations. Previous studies showed that stable transfectants of mutant HSV-TK with enhanced affinity to GCV were killed at lower GCV concentrations. In this study, we tested whether mutant HSV-TK can provide enhanced suicidal effect when transiently transfected with Epstein-Barr virus (EBV)-based plasmid. EBV-based plasmid which contains OriP and EBNA-1 sequence is well known for a stable episomal maintenance in human cells. Optimal transfection condition was assessed for SNU-638 gastric cancer cell line using polyetylnimine (PEI). Maximum transfection efficiency was achieved when DNA:PEI was 1:3 (w/v). Cytotoxicities of mutant and wild type HSV-TK were compared before and after partially selecting transfected cells. The cells were sensitive to $100\;{\mu}g/ml$ hygromycin. Following GCV treatment, more cells were killed after hygromycin selection than before selection. The mutant HSV-TK showed enhanced cytotoxicity compared with the wild type HSV-TK. Our results suggest that the EBV-based plasmid encoding mutant HSV-TK may be useful to treat the diseases caused by uncontrolled cell proliferation such as cancer and rheumatoid arthritis.

Streptomyces sp. AO-0511이 생산하는 Herbimycin A 및 Dihydroherbimycin A의 이화학적 특성 및 생물 활성 (Chemical Characteristics and Biological Activities of Herbimycin A and Dihydroherbimycin A Produced by a Soil Isolate Streptomyces sp. AO-0511)

  • 장흥배;김세찬;김재헌
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.47-53
    • /
    • 2006
  • 한국 토양에서 방선균주를 분리하고 화학 분류 및 16S rDNA 염기서열을 통하여 Streptomyces 속 균주임을 알아내고 Streptomyces sp. AO-0511로 명명하였다. 이 균주가 생산하는 herbimycin A 및 dihydroherbimycin A의 몇 가지 이화학적 성질과 생물 활성을 측정하였다. 두 물질은 모두 산성 조건에서 안정성을 나타냈으며, dihydroherbimycin A는 herbimycin A에 비해 상대적으로 높은 열 안정성을 지니며 극성 또한 높은 물질로서 TLC 상의 Rf간이 낮았다. Herbimycin A와 dihydroherbimycin A는 모두 Bacillus subtilis ATCC 6633 및 Micrococcus luteus ATCC 9341에 대하여 약한 저해 활성을 나타내었고, 다른 미생물에 대해서는 저해 활성을 나타내지 앓았다. 항암 활성에 있어서 두 물질은 폐암 세포인 AS49세포와 백혈병 세포인 HL-60세포에 대해서 강력한 중식 저해 활성을 나타내었다. L5178Y및 P388세포를 사용하여 세포 독성을 측정하였다. 그 결과 두 물질은 대조 물질인 camptothecin에 비해서 항암 활성을 가지면서도 비교적 안전한 물질임을 알려 주고 있다.

The Ring-H2 Finger Motif of CKBBP1/SAG Is Necessary for Interaction with Protein Kinase CKII and Optimal Cell Proliferation

  • Kim, Yun-Sook;Ha, Kwon-Soo;Kim, Young-Ho;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제35권6호
    • /
    • pp.629-636
    • /
    • 2002
  • Protein kinase CKII (CKII) is required for progression through the cell division cycle. We recently reported that the $\beta$ subunit of protein kinase CKII ($CKII{\beta}$) associates with CKBBP1 that contains the Ring-H2 finger motif in the yeast two-hybrid system. We demonstrate here that the Ring-H2 finger-disrupted mutant of CKBBP1 does not interact with purified $CKII{\beta}$ in vitro, which shows that the Ring-H2 finger motif is critical for direct interaction with $CKII{\beta}$. The CKII holoenzyme is efficiently co-precipitated with the wild-type CKBBP1, but not with the Ring-H2 finger-disrupted CKBBP1, from whole cell extracts when epitope-tagged CKBBP1 is transiently expressed in HeLa cells. Disruption of the Ring-H2 finger motif does not affect the cellular localization of CKBBP1 in HeLa cells. The increased expression of either the wild-type CKBBP1 or Ring-H2 finger-disrupted CKBBP1 does not modulate the protein or the activity levels of CKII in HeLa cells. However, the stable expression of Ring-H2 finger-disrupted CKBBP1 in HeLa cells suppresses cell proliferation and causes the accumulation of the G1/G0 peak of the cell cycle. The Ring-H2 finger motif is required for maximal CKBBP1 phosphorylation by CKII, suggesting that the stable binding of CKBBP1 to CKII is necessary for its efficient phosphorylation. Taken together, these results suggest that the complex formation of $CKII{\beta}$ with CKBBP1 and/or CKII-mediated CKBBP1 phosphorylation is important for the G1/S phase transition of the cell cycle.

Cytotoxic Effects on HL-60 Cells of Myosin Light Chain Kinase Inhibitor ML-7 Alone and in Combination with Flavonoids

  • Lee, Joong-Won;Kim, Yang-Jee;Choi, Young-Joo;Woo, Hae-Dong;Kim, Gye-Eun;Ha, Tae-Kyung;Lee, Young-Hyun;Chung, Hai-Won
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.181-188
    • /
    • 2009
  • Uncontrolled cell growth and increased cell proliferation are major features of cancer that are dependent on the stable structure and dynamics of the cytoskeleton. Since stable cytoskeleton structure and dynamics are partly regulated by myosin light chain kinase (MLCK), many current studies focused on MLCK inhibition as a chemotherapeutic target. As a potent and selective MLCK inhibitor, ML-7 [1-(5-iodonaphthalene-1-sulfonyl)-1 H-hexahydro-1,4-diazapine hydrochloride] is a promising candidate for an anticancer agent, which would induce apoptosis as well as prevents invasion and metastasis in certain types of cancer cells. This study assessed cytotoxic effects of ML-7 against HL-60 cells and therapeutic efficacy of ML-7 as a potential antileukemia agent. Trypan-blue exclusion assays showed dose- and time- dependent decreases in ML-7 treated HL-60 cells (p<0.05). Comet assays revealed a significant increase in DNA damage in HL-60 cells after treatment with $40{\mu}M$ ML-7 for 2h. Sub-G1 fractions, analyzed by flow cytometry increased in a dose-dependent manner, suggesting that ML-7 can induce apoptotic cell death in HL-60 cells. ML-7 was selectively cytotoxic towards HL-60 cells; not affecting normal human lymphocytes. That selective effect makes it a promising potential anti-leukemia agent. In addition, anticancer efficacy of ML-7 in combination with flavonoids (genistein or quercetin) or anticancer drugs (cisplatin or Ara-C) against HL-60 cells was assessed. Combination of ML-7 with flavonoids increased the anti-cancer effect of ML-7 to a greater extent than combination with the anticancer drugs. This implies that ML-7 in combination with flavonoids could increase the efficacy of anticancer treatment, while avoiding side effects cansed by conventional anticancer drug-containing combination chemotherapy.

말의 LH/CGR를 발현하는 CHO 세포와 PathHunter Parental 세포에서 유전자 재조합 eCGβ/α의 생화학적 특성 (Biochemical Characterization of Recombinant Equine Chorionic Gonadotropin (rec-eCG), Using CHO Cells and PathHunter Parental Cells Expressing Equine Luteinizing Hormone/Chorionic Gonadotropin Receptors (eLH/CGR))

  • 이소연;?바락차 뭉흐자야;김정수;성훈기;강명화;민관식
    • 생명과학회지
    • /
    • 제27권8호
    • /
    • pp.864-872
    • /
    • 2017
  • eCG는 다른 포유동물에서 FSH와 LH의 활성을 나타내기 때문에 성선자극 호르몬 family에서 아주 특이적이고 많은 당쇄가 수식되어진 알파와 베타의 비공유결합으로 구성되어 있다. 유전자 재조합 $eCG{\beta}/{\alpha}$의 생물학적 기능을 규명하기 위하여 말의 LH/CGR의 포유동물발현용 벡터를 구축하였다. 재조합 $eCG{\beta}/{\alpha}$의 활성분석은 말의 LH/CGR가 일시적으로 발현되는 CHO-K1 세포와 지속적으로 발현되는 PathHunter Parental 세포를 이용하여 분석하였다. 유전자 재조합 $eCG{\beta}/{\alpha}$는 CHO-K1 부유세포의 상층으로 효율적으로 분비되었으며, 분비량은 transfection 후 1일에서 7일까지 약 200 mIU/ml이었다. Western blot 분석결과는 재조합 $eCG{\beta}/{\alpha}$의 분자량은 약 40-45 kDa으로 검출되었다. eLH/CGR가 발현되는 CHO-K1 세포에서의 cAMP분비량으로 재조합 $eCG{\beta}/{\alpha}$의 활성을 분석하였다. 그 결과 cAMP농도는 재조합 $eCG{\beta}/{\alpha}$의 농도의존적으로 증가하였다. eLH/CGR가 일시적으로 발현하는 CHO-K1 세포에서 $EC_{50}$ 값은 $8.1{\pm}6.5ng$이었다. 또한 일시적 및 지속적으로 eLH/CGR가 발현하는 PathHunter Parental 세포에서도 재조합 $eCG{\beta}/{\alpha}$의 LH 활성 분석결과 높은 활성을 나타내는 것으로 확인되었으며, 이들의 $EC_{50}$ 값은 각각 $5.0{\pm}4.7ng/ml$, $4.5{\pm}5.2ng/ml$으로 나타났다. 따라서 이러한 결과에 의하면 재조합 $eCG{\beta}/{\alpha}$는 말의 LH/CGR가 발현하는 세포에서 생물학적 활성을 나타난다는 것을 확인하였으며, PathHunter Parental 세포에서 지속적으로 발현되는 세포의 확보는 당쇄제거에 의한 재조합 eCG의 돌연변이등에 관한 기능적인 메커니즘을 밝히는데 유용할 것으로 사료된다.

HLA-restricted and Antigen-specific CD8+ T Cell Responses by K562 Cells Expressing HLA-A*0201

  • Yun, Sun-Ok;Sohn, Hyun-Jung;Yoon, Sung-Hee;Choi, Hee-Baeg;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.179-184
    • /
    • 2006
  • Background: Identification of antigen-specific T cells has yielded valuable information on pathologic process and the disease state. Assays for quantification of inflammatory cytokines or lytic-granule molecules have been generally used to evaluate antigen specific T cell response, however their applicability have been hampered due to the limited source of autologous antigen-presenting target cells (APC). Methods: K562, a leukemic cell line deficient of human leukocyte antigen (HLA), was transfected with a gene encoding HLA-A*02 (K562/ A*02) and its function as stimulator cells in inducing activation of HLA-matched T cells was evaluated by IFN-${\gamma}$ enzyme linked immunospot (ELISPOT) assay. Results: The stable transfectant K562/ A*02 pulsed with HLA- A*02 restricted peptide could specifically induce IFN-${\gamma}$ secretion by CD8+ T cells compared to no detectable secretion by CD4+ T cells. However, CD56+ NK cells secreted IFN-${\gamma}$ in both K562/ A*02 with peptide and without peptide. The number of IFN-${\gamma}$ secreted CD8+ T cells was increased according to the ratio of T cells to K562 and peptide concentration. Formalin-fixed K562/ A*02 showed similar antigen presenting function to live K562/ A*02. Moreover, K562/ A*02 could present antigenicpeptide to not only A*0201 restricted CD8+ T cells but also CD8+ T cells from A*0206 donor. Conclusion: These results suggest that K562/ A*02 could be generally used as target having specificity and negligible background for measuring CD8+ T cell responses and selective use of K562 with responsder matched HLA molecules on its surface as APC may circumvent the limitation of providing HLA-matched autologous target cells.

Analysis of the Biological Function of ELDF15 Using an Antisense Recombinant Expression Vector

  • Liu, Yan;Wang, Long;Wang, Zi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9131-9136
    • /
    • 2014
  • ELDF15, homologous with AT2 receptor-interaction protein 1 (ATIP1), may play an important role in cell differentiation, proliferation, and carcinogenesis. We aimed to understand the biological function of ELDF15 via construction and transfection of a recombinant expression vector containing antisense ELDF15. Recombinant expression vectors were successfully constructed and transfected into K562 cells. A stable transfectant, known as pXJ41-asELDF15, stably produced antisense ELDF15. Compared with K562 and K562-zeo cells, K562-pXJ41-asELDF15 cells showed inhibition of cell proliferation. RT-PCR analysis showed that the expression and protein level of ELDF15 decreased significantly in K562 cells transfected with pXJ41-asELDF15. Expression of hemoglobin increased in K562 cells transfected with pXJ41-asELDF15 by benzidine staining. increases NBT reduction activity in K562 cells transfected with pXJ41-asELDF15.Colony forming efficiency in two-layer soft agar was clearly inhibited as assessed by electron microscopy. These results suggest that ELDF15 plays a potential role in cell differentiation, proliferation and carcinogenesis.