• 제목/요약/키워드: stability problem

검색결과 2,397건 처리시간 0.031초

ON THE STABILITY OF THE PEXIDER EQUATION IN SCHWARTZ DISTRIBUTIONS VIA HEAT KERNEL

  • Chung, Jae-Young;Chang, Jeong-Wook
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.467-485
    • /
    • 2011
  • We consider the Hyers-Ulam-Rassias stability problem $${\parallel}u{\circ}A-{\upsilon}{\circ}P_1-w{\circ}P_2{\parallel}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$$ for the Schwartz distributions u, ${\upsilon}$, w, which is a distributional version of the Pexider generalization of the Hyers-Ulam-Rassias stability problem ${\mid}(x+y)-g(x)-h(y){\mid}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, x, $y{\in}\mathbb{R}^n$, for the functions f, g, h : $\mathbb{R}^n{\rightarrow}\mathbb{C}$.

자세 제어 장치와 능동 후륜 조향을 이용한 최적 요 모멘트 분배 (Optimum Yaw Moment Distribution with Electronic Stability Control and Active Rear Steering)

  • 임성진
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1246-1251
    • /
    • 2014
  • This article presents an optimum yaw moment distribution scheme for a vehicle with electronic stability control (ESC) and active rear steering (ARS). After computing the control yaw moment in the yaw moment controller, it should be distributed into tire forces, generated by ESC and ARS. In this paper, yaw moment distribution is formulated as an optimization problem. New objective function is proposed to tune the relative magnitudes of the tire forces. Weighed pseudo-inverse control allocation (WPCA) is adopted to solve the problem. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From the simulation, the proposed optimum yaw moment distribution scheme is shown to effective for vehicle stability control.

자착식 고무화 아스팔트 방수시트의 접착특성에 관한 실험적 연구 (An Experimental Study on the Adhesion Property of Self Adhesive Rubberized Asphalt Waterproofing Sheet)

  • 정현상;강효진;송재영;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.1-4
    • /
    • 2005
  • This study is to examine adhesion the characteristics of self adhesive asphalt to minimize of the construction periods and the environmental problems through the performance estimation of materials to reduce waterproof problem and the long durability maintenance of building structures. This study tested the estimation items of self rubberized adhesive asphalt to examine the sheet discovered the most important problem in the construction site and the connection stability in the sheet joint. Besides, this study examined the material characteristics such as tension property, tear property, temperature dependence, heat resistance, adhesion stability and so on. Test results of the separative items satisfied in the reference figure of connection stability and adhesion stability which could confirm adhesion performances and other items also satisfied in the reference.

  • PDF

ON THE HYERS-ULAM-RASSIAS STABILITY OF JENSEN'S EQUATION

  • Zhang, Dongyan;Wang, Jian
    • 대한수학회보
    • /
    • 제46권4호
    • /
    • pp.645-656
    • /
    • 2009
  • J. Wang [21] proposed a problem: whether the Hyers-Ulam-Rassias stability of Jensen's equation for the case p, q, r, s $\in$ ($\beta$, $\frac{1}{\beta}$) \ {1} holds or not under the assumption that G and E are $\beta$-homogeneous Fspace (0 < $\beta\;\leq$ 1). The main purpose of this paper is to give an answer to Wang's problem. Furthermore, we proved that the stability property of Jensen's equation is not true as long as p or q is equal to $\beta$, $\frac{1}{\beta}$, or $\frac{\beta_2}{\beta_1}$ (0 < $\beta_1,\beta_2\leq$ 1).

히스테리시스 특성을 고려한 자계의 유한 요소 해석 (gnetic Fields With Hysteresis Characteristics)

  • 정훈;홍선기;원종수
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.1033-1047
    • /
    • 1989
  • A finite element method for the analysis of magnetic fields with hysteresis characteristics is proposed. The method employs Preisach model to describe hysteresis of magnetic material, so that even multi-branch or minor-loop characteristics can be taken into account. The problem can be considered as the analysis of a nonlinear equation where magnetization depends not only on the present value of the magnetic field but also on the past values, and the problem can be solved by the iteration method. Measurements were carried out on soft ferrite EI core for the comparison with computer solution, and good agreements were obtained. is investigated. A theoretical approach to gait study is proposed in which the static stability margins for periodic gaits are expressed in terms of the kinematic gait formula. The effects fo the stride length on static stability are analyzed and the relations between static stability and initial body configurations are examined. It is shown that the moving velocity can be increased to some extent without affecting stability margins for a given initial body configuration. Computer simulations are performed to verify the analysis.

  • PDF

사석 방파제에서 내부사석의 적정규격에 관한 실험적 연구 (An Experimental Study on Optimal Size of Core Material in Rubble Mould Breakwater)

  • 민석진;배종철;김성득
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.16-21
    • /
    • 2004
  • In general, core materials of rubble mound breakwater are used at a restricted range of 0.015㎥~0.03㎥. However, it is not satisfied with the standard design in over fifty percent of the cases. In this study, model tests and numerical analysis are employed to examine the range of core material that has no problem with capacity maintenance and stability of rubble mound breakwater. Model tests measure the porosities that are mixed in various ratios, to classify core materials by three parameters. The slope stability of rubble mound breakwater is investigated, using numerical analysis, with a friction angle and a unit weight. The change of unit weight, which is followed by the mixed rate of size core material, has no large affect on slope stability, and there is no problem with ensuring slope stability of the rubble mound breakwater.

ON THE HYERS-ULAM-RASSIAS STABILITY OF THE JENSEN EQUATION IN DISTRIBUTIONS

  • Lee, Eun-Gu;Chung, Jae-Young
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.261-271
    • /
    • 2011
  • We consider the Hyers-Ulam-Rassias stability problem ${\parallel}2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2{\parallel}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, $x,y{\in}{\mathbb{R}}^n$ for the Schwartz distributions u, which is a distributional version of the Hyers-Ulam-Rassias stability problem of the Jensen functional equation ${\mid}2f(\frac{x+y}{2})-f(x)-F(y){\mid}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, $x,y{\in}{\mathbb{R}}^n$ for the function f : ${\mathbb{R}}^n{\rightarrow}{\mathbb{C}}$.

A Method to Optimize Stability and Wheel Wear in Railway Bogies

  • Mazzola, L.;Alfi, S.;Bruni, S.
    • International Journal of Railway
    • /
    • 제3권3호
    • /
    • pp.95-105
    • /
    • 2010
  • In this paper, a procedure is proposed to optimize bogie suspension parameters in view of minimizing wheel wear produced by curve negotiation, though meeting stability requirements. The problem is dealt with in the form of a constrained minimization problem, in which wheel wear evaluated over a given service scenario is introduced as the cost function to be minimized, and the requirements on vehicle stability are formulated in terms of constraints. The procedure is applied to the case of a non-powered passenger car for high-speed service, and the results obtained are discussed. It is shown that long wheelbase bogie may provide better overall performances than bogies having comparatively short wheelbase. Furthermore, a sensitivity analysis is performed, to define the effect on the optimization results of improving the performances of the yaw dampers in the bogie and of using a different wheel profile.

  • PDF

이산시간 지연 불확실 특이시스템의 지연 종속 및 변수 종속 강인 안정성 (Delay-dependent and Parameter-dependent Robust Stability for Discrete-time Delayed Uncertain Singular Systems)

  • 김종해
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.788-792
    • /
    • 2010
  • The problem of delay-dependent and parameter-dependent robust stability condition for discrete-time uncertain singular systems with polytopic uncertainty and interval time-varying delay is considered. A new robust stability condition based on parameter-dependent Lyapunov function is derived in terms of LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general condition for both singular and non-singular systems. A numerical example is presented to demonstrate the effectiveness of the proposed method.

불연속 리아푸노프 함수를 이용한 입력제한이 있는 불확실 선형 시스템의 안정성 해석 (Robust stability analysis of uncertain linear systems with input saturation using piecewise Lyapunov functions)

  • 이상문;원상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.131-134
    • /
    • 2003
  • In this paper, we consider the problem of finding the stability region in state space for uncertain linear systems with input saturation. For stability analysis, two Lyapunov functions are chosen. One is for the lineal region and the other is for the saturated legion. Piecewise Lyapunov functions are obtained by solving successive linear matrix inequalites(LMIs) relaxations. A sufficient condition for robust stability is derived in the form of stability region of initial conditions. A numerical example shows the effectiveness of the proposed method.

  • PDF