• Title/Summary/Keyword: stability problem

Search Result 2,397, Processing Time 0.029 seconds

Control System Design for Marine Vessel Satisfying Mixed H2/H Performance Condition (H2/H 설계사양을 만족하는 선박운동제어계 설계에 관한 연구)

  • Kang, Chang-Nam;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.846-852
    • /
    • 2013
  • In this paper, the authors propose a new approach to control problem of the marine vessels which are moored or controlled by actuators. The vessel control problem in the specified area is called a DPS (Dynamic Positioning System). The main objective of this paper is to obtain more useful control design method for DPS. In this problem, a complicate fact is control allocation which is a numerical method for distributing the control signal to the controlled system. For this, many results have been given and verified by other researchers using two individual processes. It means that the controller design and control allocation design process are carried out individually. In this paper, the authors give more sophisticated design solution on this issue. In which the controller design and control allocation problem are unified by a robust controller design problem. In other word, the stability of the closed-loop system, control performance and allocation problem are unified by an LMI (Linear Matrix Inequality) constraint based on $H_2/H_{\infty}$ mixed design framework. The usefulness of proposed approach is verified by simulation with a supply vessel model and found works well.

The Hydrodynamic Stability of Natural Convection Flows Adjacent to an Inclined Isothermal Surface Submerged in Cold, Pure Water (순수한 찬물속에 잠겨있는 경사진 등온벽면 부근의 자연대류에 관한 수동력학적 안정성)

  • Hwang, Y.K.;Jang, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-278
    • /
    • 1990
  • Hydrodynamic stability equations are formulated for natural convection flows adjacent to a heated or cooled, inclined, isothermal surface in pure water at $4^{\circ}C$, where the density variation with temperature becomes nonlinear. The resulting stability equations, when reduced to ordinary differential equations by a similarity transformation, constitute a two-point boundary-value problem, which was solved numerically. It is found from the obtained stability results that the neutral stability curves are systematically shifted to have lower critical Grashof numbers, as the inclination angle of upward-facing plate increases. Also, the nose of the neutral stability curve becomes blunter as the angle increases. It implies that the greater the inclination of the upward-facing plate, the more susceptible of the flow to instability for the wide range of disturbance wave number and frequency.

  • PDF

A Study on Relative Stability for Poppet Valve with Drain Orifice (드레인 오리피스를 갖는 포펫 밸브의 상대 안정도에 관한 연구)

  • Yun, S.N.;Jeong, H.H.;Seo, J.K.;Ham, Y.B.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.12-17
    • /
    • 2010
  • The poppet valve had used every field area due to high quality of leakage property and response characteristic. But this valve still has terrible disadvantage that is self-exited vibration. This problem affects stability of total system and raises noise. The researcher tries to reduce that self-exited vibration when valve was designed. The stability discriminant is the typical study to improve the performance of the poppet valve. This paper concerns about stability discriminant that uses poppet valve with a drain orifice. At the first, the mathematical model is computed from poppet valve. After that, the limitation of stability is calculated that based on Nyquist criterion. At the final, the stability discriminant is selected in each condition and the graph that shows stability in the system is drown by dimensionless quantity.

  • PDF

Visual Servo Control of Slender Manipulators Using an Approximate Jacobian Operator (근사 자코비안 연산자를 이용한 경량 매니퓰레이터의 시각 서보 제어)

  • Lee, Ho-Gil;Kim, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1086-1092
    • /
    • 2000
  • To realize a visual servo control of slender manipulators, two problems to be solved are analysed. The stability problem on so-called noncolocation control and the infinite order problem of the real Jacobian matrix caused by the elastic deformation are discussed. By considering the dynamic relations between rigid and elastic modes, a Jacobian operator is derived and the physical meaning is also explained. Then, for practical control, a simple control scheme using an approximate Jacobian is proposed and its stable conditions are proven by means of the $L_$2$ stability theory. The scheme is structurally similar to the conventional PD control laws, but external sensors(e. g. visual sensor) are used for positioning and internal sensors for damping. A good performance is obtained via control experiments of a slender two link manipulator.

  • PDF

Optimal reinforcement design of structures under the buckling load using the homogenization design method

  • Min, Seungjae;Kikuchi, Noboru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.565-576
    • /
    • 1997
  • The material-based homogenization design method generates arbitrary topologies of initial structural design as well as reinforcement structural design by controlling the amount of material available. However, if a small volume constraint is specified in the design of Lightweight structures, thin and slender structures are usually obtained. For these structures stability becomes one of the most important requirements. Thus, to prevent overall buckling (that is, to increase stability), the objective of the design is to maximize the buckling load of a structure. In this paper, the buckling analysis is restricted to the linear buckling behavior of a structure. The global stability requirement is defined as a stiffness constraint, and determined by solving the eigenvalue problem. The optimality conditions to update the design variables are derived based on the sequential convex approximation method and the dual method. Illustrated examples are presented to validate the feasibility of this method in the design of structures.

Design of a Multiobjective Robust Controller for the Track-Following System of an Optical Disk Drive (광 디스크 드라이브의 트랙킹 서보 시스템을 위한 다목적 강인 제어기의 설계)

  • 이문노;문정호;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.592-599
    • /
    • 1998
  • In this paper, we design a tracking controller which satisfies transient response specifications and maintains tracking error within a tolerable limit for the uncertain track-following system of an optical disk drive. To this end, a robust $H_{\infty}$ control problem with regional stability constraints and sinusoidal disturbance rejection is considered. The internal model principle is used for rejecting the sinusoidal disturbance caused by eccentric rotation of the disk. We show that a condition satisfying the regional stability constraints can be expressed in terms of a linear matrix inequality (LMI) using the Lyapunov theory and S-procedure. Finally, a tracking controller is obtained by solving an LMI optimization problem involving two linear matrix inequalities. The proposed controller design method is evaluated through an experiment.

  • PDF

Analysis of Nonplanar Free Vibrations of a Beam by Nonlinear Normal Mode (비선형 정규모드를 이용한 보의 비평면 자유진동해석)

  • Lee, Won-Kyoung;Lee, Kyu-Soo;Pak, Chol-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.441-448
    • /
    • 2000
  • An investigation into the nonlinear free vibrations of a cantilever beam which can have not only planar motion but also nonplanar motion is made. Using Galerkin's method based on the first mode in each motion, we transform the boundary and initial value problem into an initial value problem of two-degree-of-freedom system. The system turns out to have two normal modes. By Synge's stability concept we examine the stability of each mode. In order to check validity of the stability we obtain the numerical Poincare map of the motions neighboring on each mode.

  • PDF

A Study on Non-Fragile Controller Design for Parameter Uncertain Systems (파라미터 불확실성 시스템에 대한 비약성 제어기 설계에 관한 연구)

  • 박성욱;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.272-272
    • /
    • 2000
  • since the controller is part or the overall closed-Loop system, it is necessary that the designed controller be able to tolerate some uncertainty in its coefficients. The adequate stability and performance margins are required for the designed nominal controllers. In the paper. we study the method to design the non-fragile fixed-structured controller for real parametric uncertain systems. When we impose the controller parameter perturbation, the structure of the controller must be given. Therefore, we assume that the controller has fixed-structure. The fixed-structure controller is practically necessary especially when the robust controller synthesis results in a high-order controller. In SISO systems, we propose the robust controller design method using the Mapping theorem. In the method, the plant uncertainty and controller Parameter are of the multilineal form in the stability and performance conditions. Then, the controller synthesis problem is easily recast to Linear Programming Problem.

  • PDF

Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory (비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석)

  • 박찬경;김석원;김회선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

Instability Analysis of Natural Convection Flow along Isothermal Vertical Cylindrical Surfaces (등온 수직 원통표면을 연하여 흐르는 자연대류 유동의 파형 불안정성)

  • 유정열;윤준원;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 1989
  • A stability problem on wave instability of natural convection flow along isothermal vertical cylindrical surfaces has been formulated, accounting for the non-parallelism of the basic flow and thermal fields. Then the problem is solved numerically under the simplifying assumption of the parallelism of the basic flow quantities. It is shown that the flow corresponding to the same characteristic boundary layer thickness becomes more stable as the value of the curvature parameter increases. The stability characteristics for Pr=0.7 appear to be more sensitive to the curvature parameter than those for Pr=7.