• Title/Summary/Keyword: stability of oil

Search Result 978, Processing Time 0.023 seconds

Characterization of Acid- and Pepsin-soluble Collagens from Rockfish Sebastes schlegeli Skin

  • Kim, Hyung-Jun;Jee, Seong-Joon;Yoon, Min-Suck;Youn, Mu-Ho;Kang, Kyung-Tae;Lee, Dong-Ho;Heu, Min-Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.6-15
    • /
    • 2009
  • Biochemical and functional properties of acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from rockfish skin were characterized. Yield of PSC (90.0%) was higher than that of ASC (63.2%). Both ASC and the PSC consisted of ${\alpha}1$ and ${\alpha}2$ chains, and $\alpha$-cross-linked components. According to the results of hydroxylation of proline and lysine, and FT-IR, no difference between the helical structure of ASC and PSC was identified. Thermal denaturation temperature (TDT) of ASC from rockfish skin was $22.8^{\circ}C$, the same as exhibited in PSC. Both ASC and PSC were higher in water absorption capacity (WAC) and oil absorption capacity (OAC) than other vegetable proteins. According to the results of emulsifying activity (EA) and cooking stability (CS), both ASC and PSC from rockfish skin were inferior compared to the commercial emulsifier (Tween-80). The results of FT-IR suggested that the structure of PSC was slightly different when compared to that of ASC. No differences in solubility were established between ASC and PSC from rockfish skin at various pH and NaCl concentrations.

Advanced Formulation and Pharmacological Activity of Hydrogel of the Titrated Extract of C. Asiatica

  • Hong Soon-Sun;Kim Jong-Ho;Li Hong;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.502-508
    • /
    • 2005
  • Titrated extract of Centella asiatica (TECA) contains three principal ingredients, asiaticoside (AS), asiatic acid (AA), and madecassic acid (MA). These components are known to be clinically effective on systemic scleroderma, abnormal scar formation, and keloids. However, one problem associated with administration of TECA is its low solubility in aqueous as well as oil medium. In this study, various nonionic surfactants and bile salts as anionic surfactant were tested and screened for solubilizing TECA with a view to developing topical hydrogel type of ointment which is stable physicochemically, and has better pharmacological effects. When TECA was incorporated into various nonionic surfactant systems, labrasol had the most potent capacity for solubilizing TECA. In cases of bile salt systems, Na-deoxycholate (Na-DOC) had foremost solubilizing capacity, even more than labrasol. In differential scanning calorimetric study, the peaks of AA, MA, AS and Na-DOC disappeared at the coprecipitate of $1\%$ TECA and $1\%$ Na-DOC, suggesting the optimum condition of Na-DOC for solubilizing TECA. When the physicochemical stability of hydrogel containing this mixture was assessed, it was stable at room temperature for at least one month. Pharmacologically it significantly decreased the size of wound area at the $9^{th}$ day when applied to the wound area of rat dorsal skin. Taken together, solubility of TECA was dramatically improved by using non ionic and anionic surfactant systems, and Na-DOC was found to be the most effective solubilizer of TECA in formulating a TECA-containing hydrogel typed ointment. Moreover this gel was considered to be applicable to clinical use for wound healing effect.

Formation of Liquid Crystal Gel with Hydrogenated Lecithin and Its Effectiveness

  • Kim In-Young;Lee Joo-Dong;Ryoo Hee-Chang;Zhoh Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.181-191
    • /
    • 2003
  • This study described about method that form liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in OW emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following. To form liquid crystal, an emulsifier used $4.0\;wt\%$ of cetostearyl alcohol (CA) by $4.0\;wt\%$ of HL as a booster, Moisturizers contained $2\;wt\%$ of glycerin and $3.0\;wt\%$ of 1.3-butylene glycol (1,3-BG). Suitable emollients used $3.0\;wt\%$ of cyclomethicone, $3.0\;wt\%$ of isononyl isononanoate (ININ), $3.0\;wt\%$ of cerpric/carprylic triglycerides (CCTG), $3.0\;wt\%$ of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions. Considering safety of skin, PH was the most suitable $\pm61.0$ ranges. The stable hardness of LCG formation appeared best in $32\;dyne/cm^2.$ Particle of LCG is forming size of $1{\~}20\;{\mu}m$ um range, and confirmed that the most excellent LCG is formed in $1{\~}6\;{\mu}m$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi-layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased $30.6\%$. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

Retracted article: Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products

  • Park, Sung Hee;Min, Sang-Gi;Jo, Yeon-Ji;Chun, Ji-Yeon
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.630-637
    • /
    • 2015
  • In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products.

Property Changes due to Numbers of Nitrogen Atom Bonded at Ethyl Group, Included in Main Chain of Curing Agents of DGEBGF/Linear Amino Systems (DGEBF/선형아민 계에서의 경화제 주쇄에 포함된 에틸기에 결합된 질소원자 개수에 따른 물성변화 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.44-51
    • /
    • 2004
  • To determine the effect of numbers of nitrogen atom bonded at ethyl group included in main chain of linear amine curing agents of epoxy-cure systems on the thermal and mechanical properties, standard epoxy resin DGEBF was cured with DETA, TETA and TEPA in a stoichiometrically equivalent ratio. From this work, the effect of curing agents of the DGEBF/amine systems oil the thermal and mechanical properties was significantly influenced by numbers of nitrogen atom of curing agents. The results showed that heat of reaction increased, and maximum exothermic temperature decreased with the decrease of numbers of nitrogen atom. In case of cured systems, density and maximum conversion(%) had no relation to numbers of nitrogen atom, but flexural modulus and tensile modulus increased with the decrease of numbers of nitrogen atom in main chain. Thermal stability, shrinkage(%), Tg, tensile and flexural strength showed irregular tendency having nothing to do with numbers of nitrogem atom at a sight. This findings imply that the differences in the maximum conversion(%) about the chain length of curing agents affect the thermal and mechanical properties.

Preparation of Solid Dosage Form containing SMEDDS of Simvastatin by Microencapsulation (심바스타틴 자가유화약물전달시스템의 마이크로캡슐화를 통한 고형제제의 개발)

  • Kang, Bok-Ki;Yoon, Bok-Young;Seo, Kwang-Su;Jeung, Sang-Young;Kil, Hee-Joo;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.121-127
    • /
    • 2003
  • The objective of this study was to solidify the simvastatin self-microemulsifying drug delivery system (SMEDDS) and to improve the encapsulation efficiency of solidified alginate beads using sodium alginate. Typical simvastatin SMEDDS was composed of various oils, surfactants and cosurfactants. Also solidified-alginate beads was prepared by crosslinking liquid emulsion mixtures containing sodium alginate and other excipients (cetylpyridinum chloride (CP-Cl), hydroxypropyl methylcellulose, starch and so on). in $CaCl_2$ solution, it has been investigated that the drug release pattern and encapsulation efficiency were varied with the ratio of cationic lipid (CP-Cl). Solidified sodium alginate beads containing simvastatin SMEDDS were redispersed into media without re-aggregation. Oil droplet size of redispersed solidified-beads in media produced smaller than the initial size. The density of beads and drug loading amount were increased with increasing cationic lipid content. These systems have advantages of storage stability and predictability of drug release rate.

Antioxidative Effects of Chitosan Meat Sausage (축육 소시지에 첨가한 키토산의 항산화 효과)

  • 윤선경;김연주;안동현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.477-481
    • /
    • 2001
  • A large quantity of fat is added in processing of emulsion sausage. It is bring about deterioration and toxic substance by oxidation. Antioxidants are generally used as a protection material of oxidation for a storage and preservation of foods. In terms of stability of foods and health of human, development of a high effective antioxidants in a natural is required. Chitosan which is made from chitin by processing of deacetylase, has various function of antibiosis, antimutation and antioxidation and so on. We studied about the antioxidation of chitosan using to emulsion sausage. As a results, antioxidative effects of chitosan were increased with th large milecular weight and the higher concentration. M.W. 30,000 and M.W. 120,000 of chitosan have more 20% of antioxidation effect in emulsion sausage. Because chitosan have not 100% of antioxidation effect, we concluded that it has synergy effect by using with other natural material which has an effect of antioxidation.

  • PDF

Pharmacopuncture of Bauhinia variegata Nanoemulsion Formulation against Diabetic Peripheral Neuropathic Pain

  • Gupta, Pushpraj S;Singh, Sunil K;Tripathi, Abhishek K
    • Journal of Pharmacopuncture
    • /
    • v.23 no.1
    • /
    • pp.30-36
    • /
    • 2020
  • Objectives: The objective of the study was to prepare Bauhinia variegata loaded nanoemulsion(formulation and determine the efficacy of herbal drug formulation against diabetic peripheral neuropathic pain through acupuncture technique. Methods: Nine different ba tches of nanoemulsion (NE1 NE9) of BVN was prepared by varying the Smix ratio and the concentration of oil. BVN was characterized to determine particle size, shape, zeta potential, polydispersity index, optical transmittance, drug release profile and stora ge stability. The optimized formulation was subjected to plantar test, behavioral tests of neuropathic pain and Von Frey filament stimulation test. Diabetes was induced by intraperitoneal injection of freshly prepared solution of Streptozotocin (60 mg/kg) to the experimental rats. Animals were made diabetic divided into four groups, Group I was untreated normal control group, Group II was diabetic control group, Group III was Bauhinia variegata extract ( treated group (100 mg/kg/day, p.o) and Group IV was BVN treated groups (100 mg/kg/day, p.o) acute and chronically. Results: The prepared B. variegata loaded nanoemulsion was nanosized (124 nm), spherical, uniform and stable over the period of 180 days with no change in physiochemical properties. The bl ood glucose and body weight of animals was normalizing after four weeks of treatment that was significant with BVN in comparison to diabetic control group. The chronic administration of BVN significantly (P<0.001) decreased hind paw withdrawal latency an d attenuated mechanical allodynia as compared with diabetic rats. Conclusion: Thus, BVN may be an effective drug formulation against diabetic peripheral neuropathic pain.

Effects of Flour Storage Conditions on the Lipid Oxidation of Fried Products during Storage in the Dark

  • Lee, Yoo-Sung;Lee, Ji-Yeun;Choe, Eun-Ok
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.399-403
    • /
    • 2006
  • The effect of flour storage conditions on the lipid oxidation of fried products during storage was studied. Wheat flour was stored at $60^{\circ}C$ in the dark and at water activity (Aw) of 0.3, 0.5, or 0.8 for 21 days. The square-shaped dough ($2{\times}2{\times}0.1\;cm$) made with the stored flour and water was fried in soybean oil at $160^{\circ}C$ for 1 min. The fried products were stored at $60^{\circ}C$ for 15 days in the dark. The degree of lipid oxidation of the fried products was evaluated by conjugated dienoic acid (CDA) content and p-anisidine value (PAV). Both CDA content and PAV of the fried products increased with lengthening storage time of the fried products, suggesting that longer storage of the fried products raised the lipid oxidation. Furthermore, the lipid oxidation of the fried products made with flour that had been stored for a longer time tended to be higher than that of those made with unstored or short-term-stored flour. However, Aw at which the flour was stored did not significantly affect the lipid oxidation of either flour or the fried products during storage. The storage time of flour clearly exerted a greater effect than Aw on the lipid oxidation of the fried products during storage at $60^{\circ}C$ in the dark. This suggests that for the storage stability of fried products, the flour storage time is a more important factor than Aw at which the flour is stored.