• Title/Summary/Keyword: stability of oil

Search Result 978, Processing Time 0.033 seconds

Effect of Hot Pepper Seed Oil, Capsaicin, and Alpha-Tocopherol on Thermal Oxidative Stability in Lard and Soy Bean Oil (고추씨유, 캡사이신 및 토코페롤의 첨가가 돈지와 대두유의 산화안정성에 미치는 영향)

  • Lee, Chi-Ho;Han, Kyu-Ho;Kim, Ah-Young;Lee, Seul-Ki;Hong, Go-Eun;Pyun, Chang-Won;Choi, Kang-Duk;Yang, Cheul-Young
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.660-666
    • /
    • 2008
  • This study was designed to compare the thermal oxidative stability of lard, soy bean oil, and hot pepper seed oil for 0-3 d at $100^{\circ}C$, and to evaluate the effect of capsaicin on thermal oxidative stability in lard and soy bean oil. As result, thermal oxidation stability was shown in the order hot pepper seed oil>soy bean oil>lard for 0-3 d at $100^{\circ}C$. In blended oils, hot pepper seed oil effectively inhibited lipid oxidation when mixed with lard than soy bean oil by showing the ratio of 30% pepper seed oil plus 70% lard and 60% pepper seed oil plus 40% soy bean oil inhibited lipid oxidation during storage periods. And to investigate the antioxidative effect of antioxidants such as capsaicin and alpha-tocopherol in hot pepper seed oil, 1,200 and 2,400 ppm capsaicin, or 0.3% alpha-tocopherol were added in soy bean oil and lard and stroed for 0-3 d at $100^{\circ}C$. Capsaicin inhibited lipid oxidation in lard but not in soy bean oil, however alpha-tocopherol exhibited a prooxidaton effect in soybean oil. Therefore, it suggests that the application of hot pepper seed oil or capsaicin in lard may be better for thermal oxidative stability.

Characteristics of Mayonnaise Prepared with Palm Oil (팜유의 사용에 의한 마요네즈의 품질 특성)

  • Kim, Jae-Wook;Hong, Ki-Ju;Chung, Byoung-Sang;Hur, Jong-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.261-265
    • /
    • 1997
  • To know the availability of double fractionated palm olein (DFPL) for vegetable oil in commercial mayonnaise preparation, oxidative stability and stability to cold test of DFPL, soybean oil and blended oils (blended soybean oil with DFPL) were tested. Mayonnaises with these oils were prepared and then emulsion stability at low temperature $(-5^{\circ}C)$ were compared. The oxidative stability of vegetable oil by Rancimat test showed that induction time of DFPL (26.9 hr) was longer when compared with soybean oil (13.4 hr), and became longer with increase of DFPL ratio in the blended oil. Emulsion stability of mayonnaises at low temperature $(-5^{\circ}C)$ was decreased with the increase of DFPL ratio in the blended oil. But, mayonnaise with blended oil of below 20% DFPL was comparable to that with soybean oil only. Among quality characteristics of mayonnaises with soybean oil and blended oil (soybean oil 85% plus DFPL 15%) the latter showed stronger oxidative stability and less flavor reversion during high temperature treatment. This result suggested that the possibility of DFPL to substitute for vegetable oil in the preparation of commercial mayonnaise.

  • PDF

Effect of Soybean Lecithin on the Thermal Oxidation of Tocopherol in Blended Oil (혼합유중(混合油中) Tocopherol의 열산화(熱酸化)에 미치는 대두(大豆) Lecithin의 효과(效果))

  • Chang, Hyun-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 1993
  • The blended oil was prepared from cottonseed oil and palm olien. The oxidative stability of blended oil after the addition of natural tocopherol and soybean lecithin during heating was investigated and the effects of lecithin were evaluated. The result obtained were as follows: 1. When the concentration of palm olein in blended oil during heating was increased, the oxidative stability was improved. 2. By both addition of natural tocopherol and soybean lecithin during heating in blended oil, induction period was considerably increased and residual ratio of tocopherol was high. 3. The oxidative stability of potato chips prepared from blended oil was higher in the prsence of lecithin than in the absence of it.

Storange Stability of Instant Ramyon Manufactured with Blended Rapeseed Oil (혼합 유채유로 제조한 라면의 저장안정성)

  • Chang, Yong-Sang;Yang, Joo-Hong;Shin, Hyo-Seon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-18
    • /
    • 1987
  • The storage stability of Instant Ramyon by industrially prepared with palm, beef tallow and blended rapeseed oils for frying oil was studied. The products was stored under fluorescent light at $60^{\circ}C$ with illumination of 9,000 lux. Changes of peroxide value, total carbonyl value, and absorbance at 232 nm of lipids extracted from Ramyon were investigated during storage. The storage stability of Ramyon prepared with oils containing TBHQ had better than that prepared with a mixture of BHA and BHT. The Ramyon prepared with 4 part of rapeseed oil to 6 part of tallow containing 0.02% BHA/BHT showed higher storage stability than that prepared with palm oil alone but showed lower stability than that prepared with tallow alone both under the same condition of antioxidant treatment.

A Study on the Stability of Emulsion by Polyglycerol Ester (폴리글리세롤 에스터를 이용한 안정한 에멀젼의 제조연구)

  • Kang, Ki-Chun;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.152-159
    • /
    • 2013
  • Experiments of emulsion particles state of using polyglycerol ester emulsifier and the stability in accordance with the change of time were conducted using several oil. Experimental results confirmed that there is little difference in the stability and particle size depending on the type of oil. Most stable oil with polyglycerol ester is polar oil of silicon series and fatty acid ester oil, hydrocarbon oil of the nonpolar oil (Mineral oil, squalane, polydecene) was the most unstable state. And vegetable oils showed the stable form of particles with polyglycerol ester emulsifier.

Analysis of Fatty Acid Composition and Methyl-ester Properties of Camellia and Tea Oil (동백나무와 차나무 기름의 지방산 조성 및 메틸에스테르 특성 분석)

  • Kim, Kwang-Soo;Lee, Yong-Hwa;Jang, Young-Seok;Choi, In-Hu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • To secure raw materials of biodiesel production, the possibility of camellia (C. japonica L.) and tea (C. sinensis L.) seed oil was studied to produce biodiesel. In this research, crude oil contents and fatty acid compositions of seeds were analyzed by Solxlet and Gas chromatography (GC). The oil contents in the seeds of camellia were 69.8%~73.8%, and tea were 26.3%~29.4%. Among the fatty acids of camellia and tea oil, oleic acid was dominant. The unsaturated fatty acids accounted for 88.4% and 80.2% of the whole fatty acids of camellia and tea seed oil. Total seed oil content and fatty acid composition of tea seed were influenced by collecting date. Across maturation period, oil content of tea seed averaged 18.3% on $6^{th}$ September increasing to 27.9% by $11^{th}$ October. For largest seed yield and oil content, the optimum time to harvest tea is in middle october, and camellia is late september and thereafter. The extraction efficiency of oil from seeds by extraction methods was determined. Biodiesel were synthesized in 92.1~92.8% yields from camellia and tea oils by transesterification. The biodiesel was characterized by its physical and fuel properties including oxidation stability, iodine value and cold filter plugging point (CFPP). Oxidation stability of camellia was 8.6~8.8 hours and tea was 2.9~3.6 at $110^{\circ}C$. Camellia oil had considerably better oxidation stability and CFPP than tea oil.

A Study on the Storage Stability and Malodor of Bio-Fuel oil (바이오중유의 저장안정성 및 악취특성 연구)

  • JANG, EUN-JUNG;PARK, CHEON-KYU;LEE, BONG-HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.712-720
    • /
    • 2017
  • As Korean government has activated the renewable portfolio standard (RPS) since 2012, producers have been seeking and using the various renewable resources to meet the RPS quota. One of these efforts, Power Bio-Fuel oil demonstration project is being conducted to check the operability and compatibility with fossil fuel, Fuel oil (B-C) from 2014. The oil is a mixture of vegetable oil and animal fat or fatty acid ester of them and should satisfy some specification to use the power generation. The oil's quality and combustion characteristics are different from conventional oil, Fuel oil (B-C) in current power plant facility. In this study, it was investigated the storage stability and malodor intensity of Bio-Fuel oil.

Fatty Acid Composition, Contents of Tocopherols and Phytosterols, and Oxidative Stability of Mixed Edible Oil of Perilla Seed and Rice Bran Oil (들기름과 미강유 혼합 식용유의 지방산 조성, 토코페롤 및 식물성 스테롤 및 산화안전성 측정)

  • Lee, Mi-Jin;Cho, Mun-Ku;Oh, Suk-Heung;Oh, Chan-Ho;Choi, Dong-Seong;Woo, Ja-Won;Park, Ki-Hong;Jung, Mun Yhung
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • The fatty acid composition, selected minor components, and the oxidative stability of the mixed edible oil (perilla seed oil and rice bran oil, 3:7 (v/v)) were analyzed. The fatty acid composition of the mixed oil was 32.1% of oleic acid, 30.6% of linoleic acid, 21.4% of linolenic acid, 13.0% of palmitic acid, and 1.7% of stearic acid. The mixed oil contained ${\alpha}$, ${\gamma}$ and ${\delta}$-tocopherols and tocotrienols showing the highest contents of ${\alpha}$-tocopherol. Total amount of tocopherols contained in the mixed oil was 46.63 mg/100 g oil. The composition and content of phytosterols were determined by a GC equipped with a flame ionization detector. Total quantity of phytosterols in the mixed oil was 712.80 mg/100 g oil. The most predominant phytosterol in the mixed oil was ${\beta}$-sitosterol, followed by campesterol and stigmasterol, in a decreasing order. The oxidative stability of the mixed oil was much higher than that of perilla oil, and similar to that of soybean oil, indicating the high oxidative stability of the mixed oil.

Emulsion stability of cosmetic creams based on water-in-oil high internal phase emulsions

  • Park, Chan-Ik;Cho, Wan-Gu;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The emulsion stability of cosmetic creams based on the water-in-oil (W/O) high internal phase emulsions (HIPEs) containing water, squalane oil and cetyl dimethicone copolyol was investigated with various compositional changes, such as electrolyte concentration, oil polarity and water phase volume fraction. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The slope change of complex modulus versus water phase volume fraction monitored in the linear viscoelastic region could be explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsions: the greater the increase of complex modulus was, the more the coalescence occurred and the less consistent the emulsions were. Emulsion stability was dependent on the addition of electrolyte to the water phase. Increasing the electrolyte concentration increased the refractive index of the water phase, and thus decreased the refractive index difference between oil and water phases. This decreased the attractive force between water droplets, which resulted in reducing the coalescence of droplets and increasing the stability of emulsions. Increasing the oil polarity tended to increase emulsion consistency, but did not show clear difference in cream hardness among the emulsions.

The Oxidation Stability of Virgin and Pure Olive Oil on Autoxidation and Thermal Oxidation (자동산화 및 가열산화에 대한 압착 및 혼합 올리브유의 산화안정성)

  • Moon, Joo-Soo;Lee, Ok-Hwan;Son, Jong-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.93-98
    • /
    • 2005
  • Total tocopherol and phenol contents were determined for virgin and pure oilve oil, and their autoxidation and thermal oxidation were compared with those of commercial soybean oil, in the presence or absence of fluorescent light. The total tocopherol contents of virgin, pure olive oil, and soybean oil were 15.7, 11.2, and 80.7 mg/100 g, respectively. Their total phenol contents were 10.4, 1.6 and 0.5 mg/l00 g, respectively. In autoxidation under dark place at 45$^{\circ}C$, the oxidative stability of the substrate oils decreased in order of virgin oilve oil, pure olive oil, and soybean oil. The average temperature coefficients of the virgin, pure olive oil and soybean oil in the range of 45∼$65^{\circ}C$ were 1.73, 1.83 and 1.64, and the activation energies were 26.86, 29.49, and 24.07 KJ/mol, respectively. In temperature range of 45∼$65^{\circ}C$, pure olive oil was the most susceptible to temperature change, whereas soybean oil the least. In autoxidation under fluorescent light at 45$^{\circ}C$, the oxidative stability of substrate oils decreased in the order of soybean oil, pure olive oil, and virgin olive oil. In thermal oxidation at 18$0^{\circ}C$, the oxidative stability of substrate oils decreased in order of pure olive oil, virgin olive oil, and soybean oil.