• 제목/요약/키워드: stability of austenite

검색결과 49건 처리시간 0.022초

AISI 9310강의 침탄열처리 경로가 조직 및 잔류응력 변화에 미치는 영향 (Effect of Carburizing Heat Treatment Process on Microstructure and Residual Stress Changes in AISI 9310 Steel.)

  • 정영철;배주현;박재만;오승준;성장현;노용식
    • 열처리공학회지
    • /
    • 제37권3호
    • /
    • pp.128-137
    • /
    • 2024
  • In this study, the carburizing heat treatment process used in aircraft gear manufacturing was compared with the general carburizing heat treatment process using AISI 9310 steel. The process of carburizing followed by slow cooling, and then quenching after austenitizing(Process A) showed less compressive residual stress and less retained austenite in the surface layer compared to the process of quenching directly after carburizing(Process B). In prpcess B, there was a large amount of retained austenite when quenched immediately after carburization, and when treated with subzero, martensite rapidly increased and the compressive residual stress increased significantly, but at the same time, there is a risk of cracking due to severe expansion in volume. Therefore, in the case of aviation parts, it is believed that a step-by-step heat treatment cycle was adopted to ensure stability against heat treatment cracks. As a result of the final tempering after sub-zero treatment, the A process specimen showed a deeper effective case depth and HV700 depth and a higher hardness value above HV700 than the B process specimen.

극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향 (Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications)

  • 이승완;황병철
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

오스테나이트계 AISI304 스테인레스강판의 프레스 성형특성 (Press Formability of Austenitic AISI304 Stainless Steel)

  • 남재복;류도열;김영석
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.38-50
    • /
    • 1994
  • Fundamental deformation mechanism and plastic behavior of AISI304 austenitic stainless steel were investigated to evaluate press formability. Local and uniform deformation capacity of AISI304 steel were compared to those of ferritic AISI430 steel and Al killed low carbon steel. Nine kinds of austenitic stainless steels having different austenite stabilities were made in laboratory scale to examine the transformation behavior in various deformation mode and variation of mechanical properties. Deformation path and strain distributions along edge corner of commercial sink die were illustrated and effect of austenite stability on press forming of sink die was clarified with experiments using square cup drawing tools.

  • PDF

Tandem 용접을 이용한 풍력타워 원주용접부 잔류응력 특성에 관한 연구 (A Study on Characteristic of Residual Stresses in a wind Tower Using the Tandem Circumferential Welding Process)

  • 김지선;김인주
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.938-945
    • /
    • 2012
  • This research proposes FEM analysis for Tandem welding process used in wind tower and predicts optimal welding process to improve the stability of welded structures. Three dimensional elasto-plastic analyses are employed to evaluate thermo-mechanical behavior of residual stress and deformation during Tandem welding for different distance between two touches. To confirm the thermal distribution, Goldak's ellipse heat source model and the real size wind tower pipe model are utilized. Four different analyses are being performed, where in each case the distance between two electrode torches is being changed and residual stress and welding deformation are predicted. Depending on base material state, each case is divided into: Liquid (100mm), Austenite+Liquid (200mm), Austenite+Cementite (400mm), Pearlite+Cementite (800mm).

Quantitative analysis of retained austenite in Nb added Fe-based alloy

  • Kwang Kyu Ko;Jin Ho Jang;Saurabh Tiwari;Hyo Ju Bae;Hyo Kyung Sung;Jung Gi Kim;Jae Bok Seol
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.5.1-5.10
    • /
    • 2022
  • The use of Pipelines for long-distance transportation of crude oil, natural gas and similar applications is increasing and has pivotal importance in recent times. High specific strength plays a crucial role in improving transport efficiency through increased pressure and improved laying efficiency through reduced diameter and weight of line pipes. TRIP-based high-strength and high-ductility alloys comprise a mixture of ferrite, bainite, and retained austenite that provide excellent mechanical properties such as dimensional stability, fatigue strength, and impact toughness. This study performs microstructure analysis using both Nital etching and LePera etching methods. At the time of Nital etching, it is difficult to distinctly observe second phase. However, using LePera etching conditions it is possible to distinctly measure the M/A phase and ferrite matrix. The fraction measurement was done using OM and SEM images which give similar results for the average volume fraction of the phases. Although it is possible to distinguish the M/A phase from the SEM image of the sample subjected to LePera etching. However, using Nital etching is nearly impossible. Nital etching is good at specific phase analysis than LePera etching when using SEM images.

22Cr 마이크로 듀플렉스 스테인리스강의 변형유기마르텐사이트에 미치는 Ni과 Mn의 영향 (Effect of Ni and Mn on Strain Induced Martensite Behavior of 22Cr Micro-Duplex Stainless steel)

  • 박준영;김기엽;안용식
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.122-129
    • /
    • 2013
  • The microstructure and deformation behavior in 22Cr-0.2N micro-duplex stainless steels with various Ni and Mn contents were compared using by OM, TEM, and XRD. The 22Cr-0.2N duplex stainless steel plates were fabricated and hot rolled, followed by annealing treatment at the temperature range of $1,000-1,100^{\circ}C$. All the samples showed the common strain hardening behaviour during the tensile test at a room temperature. The steels tested at the temperatures of $-30^{\circ}C$ or $-50^{\circ}C$ showed a distinct inflection point in the stress-strain curves, which should be resulted from the formation of strain-induced martensite(SIM) of austenite phase. This was confirmed by TEM observations. The onset strain of a inflection point in a stress-strain curve should be depended up the value of $M_d30$. With the decrease of the tensile test temperature, the inflection point appeared earlier, and the strength and fracture strain were higher. The tensile behaviour was discussed from the point of austenite stability of the micro-duplex stainless steels with the different Ni and Mn content.

TRIP형 복합조직강판의 기계적 성질에 미치는 2단 열처리 영향 (The Effect of Second Stage Heat Treatment on Mechanical Properties of TRIP aided Triple Phase Steel)

  • 이영섭;김용성;윤종구;박현순
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.216-226
    • /
    • 1998
  • Heat treatment conditions and the formation of microstructures were studied for improving the transformation-induced plasticity(TRIP) effect of retained austenite and mechanical properties of Fe-0.2%C-1.5%Si-1.5%Mn sheet steel. An excellent combination of elongation about 30% and high strength over 760MPa was achieved by processing of intercritical annealing and isothermal holding Intercritical annealing the sheet steel produced fine particles($1{\sim}2{\mu}m$) of retained austenite which were stabilized due to C enrichment by subsequent holding in bainite transformation range. Heat treatment conditions were depended on the shape and distribution of second phases as well as the volume fraction and stability of retained austenrte. In this work, the heat treatment condition of optimal strength-elongation balance was obtained by holding the steel at $400^{\circ}C$ for 200sec, after intercritical annealing at $790^{\circ}C$ for 300sec.

  • PDF

교정용 스테인리스강선재의 물리적 성질에 관한 비교연구 (A COMPARATIVE STUDY ON PHYSICAL PROPERTIES OF ORTHODONTIC STAINLESS STEEL WIRES)

  • 권오원;손병화
    • 대한치과교정학회지
    • /
    • 제15권2호
    • /
    • pp.163-174
    • /
    • 1985
  • The requirements of orthodontic wire should include chemical stability, non-discoloration and non-corrosion in oral environment. Ability to be soldered, ease of fabrication and elasticity should be also considered. The purpose of this study was to compare and analyze the physical properties of Tru-chrome wire and manufactured E.S.S. (Experimental Stainless Steel) wire similar to Tru-chrome. The results were as follows: 1. Tru-chrome wire and E.S.S. wire were SUS 304 which was 18 Cr-8Ni austenite stainless steel. There was not significant difference in each composition between two wires. 2. There were not significant differences in ultimate tensile strength, yield strength, elongation and modulus of elasticity between Tru-chrome and E.S.S. wires. 3. There was not significant difference between flexuree modulus of elasticity of Tru-chrome and E.S.S. wires. 4. Micro-hardness value of E.S.S. wire was more than that of Tru-chrome wire and they were softened significantly by solution heat reatment. 5. Micro-structure of Tru-chrome and E.S.S. wires showed fibrous interlocking grains, and an austenite structure after solution heat treatment. 6. There was significant difference between corrosion rate of Tru-chrome and E.S.S. wires.

  • PDF

Fe-26Mn-2Al 합금의 진동 감쇠능에 미치는 결정립 크기의 영향 (The Effect of grain size on the damping capacity of Fe-26Mn-2Al alloy)

  • 강창룡;엄정호;김효종;성장현
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.115-120
    • /
    • 2007
  • The effect of grain size on the damping capacity of Fe-26Mn-2Al alloy studied in this paper has been investigated after changing the microstructure by cold rolling and changing grain size. Micro structures in Fe-26Mn-2Al at room temperature consist of a large quantity of austenite and a small quantity of ${\varepsilon}\;and\;{\alpha}'$ martensite. And ${\varepsilon}\;and\;{\alpha}'$ martensite was increased by increasing the degree of cold rolling. The content of deformation induced martensite was increased with increasing the degree of cold rolling. Damping capacity was linearly increased with increasing ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principle damping sources. With increasing the grain size in Fe-26Mn-2Al alloy, the damping capacity was increased due to increasing the volume fraction of ${\varepsilon}$ martensite by decrement in stability of austenite phase. With decreasing the grain size, the content of deformation induced martensite was decreased and the damping capacity was decreased.

  • PDF

듀플렉스 스테인레스 소재의 고온 변형 안정성 및 어닐링 온도에 따른 특성 분석 (Analysis of High Temperature Deformation Stability and Properties of Duplex Stainless Steels According to Annealing Temperature)

  • 권기현;나영상;유위도;이종훈;박용호
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.495-502
    • /
    • 2012
  • The aim of this study was to analyze high temperature deformation stability and properties of duplex stainless steels(DSS) according to annealing temperature. In order to analyze high temperature deformation stability, a number of compression tests were carried out with a stain rate of $10^{-2}s^{-1}{\sim}10s^{-1}$ up to a compression ratio of 50% in a temperature range of $950^{\circ}C-1300^{\circ}C$. The analysis of high temperature deformation stability of DSS was performed based on the Ziegler model. In order to analyze the high temperature properties of DSS, annealing treatments were conducted by isothermal holding for 1 hr at $950^{\circ}C$ to $1300^{\circ}C$ with $50^{\circ}C$ intervals followed by water cooling. The hardness and tensile tests were performed on specimens with different volume fractions of constituent phases, such as austenite, ferrite and sigma. The hardness and tensile strength of 2507 according to the annealing temperature are better than those of 2205. The strain rate sensitivity and Ziegler parameter are higher in 2205 than in 2507 as a whole, which implies that 2205 is better than 2507 in terms of forgeability at high temperature.