• Title/Summary/Keyword: stability boundary

Search Result 821, Processing Time 0.026 seconds

A Study on the Effect of First-order Hold Method on the Stability Boundary of a Virtual Mass-spring Model (일차-홀드 방법이 가상 질량-스프링 모델의 안정성 영역에 미치는 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2020
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system with first-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. When first-order-hold is applied, we analyze the stability boundary of the virtual spring through the simulation according to the virtual mass and the sampling time. As the virtual mass increases, the stability boundary of the virtual spring gradually increases and then decreases after reaching the maximum value. The results are compared with the stability boundary in the haptic system with zero-order-hold. When a virtual mass is small, the stability boundary of a virtual spring in the system with first-order-hold is larger than that in the system with zero-order-hold.

A study on the stability boundary of a virtual spring model with a virtual mass (가상스프링 모델의 안정성 영역에 대한 가상질량의 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system. A haptic system consists of a haptic device, a sampler, a virtual rigid body and zero-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. According to the virtual mass and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. As the virtual mass increases, the value of the virtual spring to guarantee the stability gradually increases and then decreases after reaching the maximum value. These simulation results show that the addition of the virtual mass enables to expand the stability boundary of the virtual spring.

A New Method for Monitoring Local Voltage Stability using the Saddle Node Bifurcation Set in Two Dimensional Power Parameter Space

  • Nguyen, Van Thang;Nguyen, Minh Y.;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.206-214
    • /
    • 2013
  • This paper proposes a new method for monitoring local voltage stability using the saddle node bifurcation set or loadability boundary in two dimensional power parameter space. The method includes three main steps. First step is to determine the critical buses and the second step is building the static voltage stability boundary or the saddle node bifurcation set. Final step is monitoring the voltage stability through the distance from current operating point to the boundary. Critical buses are defined through the right eigenvector by direct method. The boundary of the static voltage stability region is a quadratic curve that can be obtained by the proposed method that is combining a variation of standard direct method and Thevenin equivalent model of electric power system. And finally the distance is computed through the Euclid norm of normal vector of the boundary at the closest saddle node bifurcation point. The advantage of the proposed method is that it gets the advantages of both methods, the accuracy of the direct method and simple of Thevenin Equivalent model. Thus, the proposed method holds some promises in terms of performing the real-time voltage stability monitoring of power system. Test results of New England 39 bus system are presented to show the effectiveness of the proposed method.

Investigation on Boundary Conditions of Fractional-Step Methods: Compatibility, Stability and Accuracy (분할단계법의 경계조건에 관한 연구: 적합성, 안정성 및 정확도)

  • Kim, Young-Bae;Lee, Moon-J.;Oh, Byung-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.410-415
    • /
    • 2001
  • An analytical and numerical examination of second-order fractional-step methods and boundary condition for the incompressible Navier-Stokes equations is presented. In this study, the compatibility condition for pressure Poisson equation and its boundary conditions, stability, and numerical accuracy of canonical fractional-step methods has been investigated. It has been found that satisfaction of compatibility condition depends on tentative velocity and pressure boundary condition, and that the compatible boundary conditions for type D method and approximately compatible boundary conditions for type P method are proper for divergence-free velocity for type D and approximately divergence-free for type P method. Instability of canonical fractional-step methods is induced by approximation of implicit viscous term with explicit terms, and the stability criteria have been founded with simple model problems and numerical experiments of cavity flow and Taylor vortex flow. The numerical accuracy of canonical fractional-step methods with its consistent boundary conditions shows second-order accuracy except $D_{MM}$ condition, which make approximately first-order accuracy due to weak coupling of boundary conditions.

  • PDF

The Characteristics and Stability Boundary Analysis of Chatter using Neural Network (신경회로망을 이용한 채터 특성 및 안정영역 분석)

  • Yoon, Moon-Chul;Kim, Young-Guk;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • In this study, the analytic realization of chatter mechanism using radial basis neural network(RBNN) was introduced and compared with the conventional stability analysis. In this regard, the FFT and time series spectrum analysis was used as a criterion for the existence of chatter in end-milling force. The desired coded outputs of chatter was trained and finally converged to desired outputs. The output of the RBNN match well with the conventional desired stability lobe. Using this trained data, the stability boundary of the radial basis neural network was acquired using the contour plotting. As a result, the proposed stability lobe boundary using RBNN consists well with the conventional analytical boundary that is calculated in characteristic equation of transfer function in chatter dynamics. In this RBNN analysis, two input and three output parameters were used in this paper.

  • PDF

Stability Analysis of Boundary Layers on Airfoils by using PSE (PSE를 이용한 익형 위 경계층 안정성 해석)

  • Park, Dong-Hun;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1055-1065
    • /
    • 2009
  • In this study, stability analysis of boundary layers on airfoils is performed by using parabolized stability equations(PSE). Boundary layer edge conditions are obtained by compressible inviscid flow calculations. Mean velocity and temperature profiles of the laminar boundary layer are obtained by solving compressible boundary layer equations in generalized curvilinear coordinates with fourth order accuracy in the wall normal direction. Laminar mean flow profiles are used as input data for PSE to investigate growth rates of disturbances and stability characteristics. For the cases of boundary layer on NACA0012 and HSNLF(1)-0213 airfoils at Mach number 0.5, growth rates with respect to disturbance frequencies and profiles of disturbance amplitude are investigated. The effect of angle of attack on stability characteristics are examined at both upper and lower surfaces. The neutral stability curves, effect of Mach number and effect of airfoil section shapes are also analyzed.

Transition Prediction of compressible Axi-symmetric Boundary Layer on Sharp Cone by using Linear Stability Theory (선형 안정성 이론을 이용한 압축성 축 대칭 원뿔 경계층의 천이지점 예측)

  • Park, Dong-Hoon;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.407-419
    • /
    • 2008
  • In this study, the transition Reynolds number of compressible axi-symmetric sharp cone boundary layer is predicted by using a linear stability theory and the -method. The compressible linear stability equation for sharp cone boundary layer was derived from the governing equations on the body-intrinsic axi-symmetric coordinate system. The numerical analysis code for the stability equation was developed based on a second-order accurate finite-difference method. Stability characteristics and amplification rate of two-dimensional second mode disturbance for the sharp cone boundary layer were calculated from the analysis code and the numerical code was validated by comparing the results with experimental data. Transition prediction was performed by application of the -method with N=10. From comparison with wind tunnel experiments and flight tests data, capability of the transition prediction of this study is confirmed for the sharp cone boundary layers which have an edge Mach number between 4 and 8. In addition, effect of wall cooling on the stability of disturbance in the boundary layer and transition position is investigated.

Research on Voltage Stability Boundary under Different Reactive Power Control Mode of DFIG Wind Power Plant

  • Ma, Rui;Qin, Zeyu;Yang, Wencan;Li, Mo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1571-1581
    • /
    • 2016
  • A novel method is proposed to construct the voltage stability boundary of power system considering different Reactive Power Control Mode (RPCM) of Doubly-Fed Induction Generator (DFIG) Wind Power Plant (WPP). It can be used for reflecting the static stability status of grid operation with wind power penetration. The analytical derivation work of boundary search method can expound the mechanism and parameters relationship of different WPP RPCMs. In order to improve the load margin and find a practical method to assess the voltage security of power system, the approximate method of constructing voltage stability boundary and the critical points search algorithms under different RPCMs of DFIG WPP are explored, which can provide direct and effective reference data for operators.

Compressible Boundary Layer Stability Analysis With Parabolized Stability Equations

  • Bing, Gao;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.110-119
    • /
    • 2006
  • An accurate and cost efficient method PSE is used for the stability analysis of 2D or 3D compressible boundary layers. A highly accurate finite difference PSE code has been developed at a general curvilinear coordinate system using an implicit marching procedure to deal with a broad range of transition predictions problems. Evolution of disturbances in compressible flat plate boundary layers are studied for free-stream Mach numbers ranging from 0 to 1.5. The effect of mean-flow nonparallelism is found to be weak on two dimensional waves and strong on three dimensional waves. The maximum amplification rate increases monotonically with Mach number. The present PSE solutions are compared with previous numerical investigations and experimental results and are found to be in good agreement.

  • PDF

Theoretical Flow Instability of the Karman Boundary Layer

  • Hwang, Young-Kyu;Lee, Yun-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.358-368
    • /
    • 2000
  • The hydrodynamic stability of the Karman boundary-layer flow due to a rotating disk has been numerically investigated for moving disturbance waves. The disturbed flow over a rotating disk can lead to transition at much lower Re than that of the well-known Type I instability mode. This early transition is due to the excitation of the Type II instability mode of moving disturbances. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The reformulated stability equations are slightly different with the previous ones. However, the present neutral stability results are considerably different with the previously known ones. It is found that the flow is always stable for a disturbance whose dimensionless wave number k is greater than 0.75.

  • PDF