• 제목/요약/키워드: stability and robustness

검색결과 563건 처리시간 0.036초

직접구동 인 휠 모터를 장착한 1인승 전기자동차의 선회안정성제어 (Cornering Stability Control of a Personal Electric Vehicle with Direct-Drive In-Wheel Motors)

  • 남강현;엄상준
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.919-924
    • /
    • 2016
  • This paper proposes a robust control design method for improving the cornering stability of a personal electric vehicle equipped with in-wheel motors. In general, vehicles undergo severe parameter variations and unpredictable disturbances with respect to a wide range of driving conditions (e.g., road surface conditions and vehicle velocity conditions). For this reason, robust control design techniques are required to guarantee consistent driving performances and robustness against various driving conditions. In this paper, an adaptive sliding mode control method is employed to enhance cornering stability by controlling the direct-drive in-wheel motors independently. Additionally, in order to confirm the effectiveness of a proposed control method, real driving tests with an experimental personal electric vehicle are performed.

시변 시간지연을 갖는 대규모 불확정성 선형 시스템의 강인 안정성 (Robust Stability of Large-Scale Uncertain Linear Systems with Time-Varying Delays)

  • 김재성;조현철;이희송;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.463-465
    • /
    • 1998
  • In this paper, we consider the problem of robust stability of large-scale uncertain linear systems with time-varying delays. The considered uncertainties are both unstructured uncertainty which is only known its norm bound and structured uncertainty which is known its structure. Based on Lyapunov stability theorem and $H_{\infty}$ theory. we present uncertainty upper bound that guarantee the robust stability of systems. Especially, robustness bound are obtained directly without solving the Lyapunov equation. Finally, we show the usefulness of our results by numerical example.

  • PDF

Robustness Analysis in a Specified Circle for Perturbed SystemsUsing LMI

  • Kim, Chan-Yong;Kim, Ga-Gue;Kang, byeng-Chal;Chol, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.61.1-61
    • /
    • 2002
  • 1. Introduction 2. System Defin 3. Stability Region in Specified Circle of Unstructured Time Invariant Perturbation 4. Example 5. Conclusion 6. References

  • PDF

비정방 비행 시스템에 대한 강인한 자동조종장치 설계 (Robust Autopilot Design for Nonsquare Flight Systems)

  • 김종식;정성훈
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1123-1131
    • /
    • 1993
  • 본 논문에서는 비행체의 사이드슬립(sideslip)의 변화를 최소로 하면서 롤(roll) 및 요(yaw) 운동을 제어하는 것을 제어목표로 하여, 입출력 갯수가 같은 정방(square)시스템과 입출력 갯수가 다른 비정방(nonsquare)시스템에 대하여 LQG/LTR 및 비례 재어기를 각각 설계하여 그 성능을 비교분석한다.

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

모터 파라미터 변화에 강인한 안정도 최대화 PI 제어기 설계 (Design of Robust Stability Maximizing PI Controller in Motor Parameter Variation)

  • 조내수;류지열;박철우;권우혁
    • 제어로봇시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.590-597
    • /
    • 2009
  • This paper propose a PI controller that maximizes the degree of stability using a stability in a simplified motor model the applies decoupling control. The PI controller gains are directly from the motor parameters, thereby reducing the element of trial and error, and, the Kharitonov equation was used to evaluate the robustness of the gains to changes in the motor parameters. In addition, the system poles are located in the same position, the proposed method can provide a fast response. The effectiveness of the proposed controller is verified by simulation results.

비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(II) - 강인 안정성 조건 (A Study on Robustness of a Two-Degree-of-Freedom Servosystem with Nonlinear Type Uncertainty(II) - Rubust Stability Condition)

  • 김영복
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.99-105
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the condition, gain tuning can be carried out to suppress the influence of the plant uncertainties and disturbance inputs.

  • PDF

단일계수적응을 통한 강건한 적응제어시의 설계및 안정성 해석 (Robust adaptive control by single parameter adaptation and the stability analysis)

  • 오준호
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.331-338
    • /
    • 1990
  • In adaptive control, the lack of persistent and rich excitation causes the estimated parameters to drift, which degrade the performance of the system and may introduces instability to the system in a stochastic environment. To solve the problem of the parameter drift, the concept of single parameter adaptation is presented. For the parameter identification, a priori error is directly used for adaptation error. The structure of the controller is based upon the minimum variance control technique. The stability and robustness analysis is carried out by the sector stability theorem for the second order system. The computer simulation is performed to justify the theoretical analysis for the various cases.

A TSK Fuzzy Controller for Underwater Robots

  • Kim, Su-Jin;Oh, Kab-Suk;Lee, Won-Chang;Kang, Geun-Taek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.320-325
    • /
    • 1998
  • Underwater robotic vehicles (URVs) have been an important tool for various underwater tasks because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system becomes one of the most critical subsytems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. In this paper a new type of fuzzy model-based controller based on Takagi-Sugeno-Kang fuzzy model is designed and applied to the control of of an underwater robotic vehicle. The proposed fuzzy controller : 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule ; 2) can guarantee the stability of the closed-loop fuzzy system ; 3) is relatively easy to implement. Its good performance as well as its robustness to the change of parameters have been shown and compared with the re ults of conventional linear controller by simulation.

  • PDF

PD-슬라이딩 모드 제어의 절환을 통한 강인한 SPMSM 속도 제어기 설계 (Design of SPMSM Robust Speed Servo Controller Switching PD and Sliding Mode Control Strategies)

  • 손주범;서영수;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.249-255
    • /
    • 2010
  • The paper proposes a new type of robust speed control strategy for permanent magnet synchronous motor by using PD-sliding mode hybrid control. The PD control has a good performance in the transient region while the sliding mode controller provides the robustness against system uncertainties. Taking advantages of the two control strategies, the proposed control method utilizes the PD control in the approaching region to the sliding surface and the sliding mode control near at the sliding surfaces. The chattering problem of the sliding mode controller is eliminated by applying the saturation function for the switching function of the sliding mode control. The stability of the sliding mode control is verified by using Lyapunov function with the proper selection of variable gains. It is shown that with this simple switching algorithm, stability of the overall hybrid control system is ensured. Through the simulations, the PD-sliding mode algorithm is shown to have a good performance in the transient response as well as being robust against disturbances. The robustness of the PD-sliding mode algorithm is further demonstrated against various external disturbances in the real experiments of SPMSM motor control.