• Title/Summary/Keyword: squid viscera oil

Search Result 18, Processing Time 0.024 seconds

The Storage Property of Squid Viscera by Supercritical Carbon Dioxide Extraction

  • Lee, Min-Kyung;Yoo, Hong-Suk;Pack, Hyun-Duk;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.55-59
    • /
    • 2007
  • The oil and concentrated protein powder from squid viscera was extracted and recovered by a semi-batch supercritical carbon dioxide ($SCO_2$) extraction system and the degree of oxidation in the extracted oil was measured in order to compare with extracted oils using organic solvents. The degree of storage in treated squid viscera by $SCO_2$ extraction was measured in order to compare with untreated squid viscera. As results obtained, it was found that the auto-oxidation of the oils using $SCO_2$ extraction occurred very slowly compared to the oils by organic solvent extraction. And the treated squid viscera by $SCO_2$ extraction was reached the point of initial rottenness slowly than untreated squid viscera.

  • PDF

Fish Oil Variation during Enzymatic Ethanolysis (어유의 효소적 에탄올화 반응 특성)

  • Shin, Sang-Kyu;Yoo, Hong-Suk;Pack, Hyun-Duk;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.311-316
    • /
    • 2006
  • Enzymatic ethanolysis of fish oil with immobilized lipase was investigated for reducing the free fatty acid contents and enhancing the function of fish oil. Ethanolysis reactions were carried out in erlenmeyer flask (25ml) containing a mixture of squid viscera oil and 99.9% ethanol using 1% (based on w/w squid viscera oil) immobilized lipase. The reaction mixtures were incubated at $50^{\circ}C$ and shaken at 100rpm. Ethanol was added into the mixture by stepwise addition method of Shinmada[9]. Measurement of free fatty acid molar amounts was studied by Acid Value. Tendency of oil variation during transesterification was studied by TLC method. Enzymatic ethanolysis composed diglyceride, monoglyceride and fatty acid ethyl ester with reducing free fatty acid contents. Also, selective ethanolysis by Lipozyme TL-IM and Lipozyme RM-IM mostly did not react at the sn-2 position of squid viscera oil. Lipozyme RM-IM was more suitable enzyme to reduce the free fatty acid contents by ethanolysis than Lipozyme TL-IM. Squid viscera oil was transformed into suitable properties (5 in Acid Value) for functional fish oil production.

  • PDF

Study for Alanalysis and Characteristics of Squid Viscera Oil During Transesterification (오징어 내장유의 에스테르화 반응물질 분석 및 특성 연구)

  • Roh, Myong-Kyun;Uddin, Salim;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.155-159
    • /
    • 2007
  • Ethanolysis of squid viscera oil with immobilized lipase was investigated for reducing the free fatty acid contents and enhancing the function of the oil by stepwise addition method of Shinmada[1]. Tendency of oil variation during Ethanolysis showed increased content of diglyceride, monoglyceride and fatty acid ethyl ester with reduced free fatty acid contents. The oil composition was analyzed using GC-FID and compared before and after ethanolysis. Structural analysis of the lipid was performed by HPLC-UV spectrophotometer during ethanolysis. The transformed oil was thought to has suitable properties for functional oil production.

  • PDF

Study for Improving Properties of Squid Viscera Oil Using Transesterification and Adsorption (에스테르 교환반응과 흡착제를 이용한 오징어 내장유의 품질 개선)

  • Roh, Myong-Kyun;Uddin, Salim;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.257-262
    • /
    • 2007
  • Squid viscera oil was investigated by pretreatment method for enhancing the commercial value. Transeterification was performed to reduce rancidity of the oil, off-flavor was removed by using activated carbon adsorption. Analysis using ATD (Automatic Thermal Desorber) and GC/MG shows the efficacy of off-flavor removement. The rates of Transesterification employing inorganic catalyst and biocatalyst were tested, respectively. With stepwise addition of ethanol, the most efficiency of the reaction was achieved by inorganic catalyst. The efficiency of the reaction was estimated by acid value corresponding to rancidity of reaction product.

  • PDF

Quality Improvement in Fish Burger by Addition of Squid Viscera Oil (오징어 내장유를 이용한 어육버거의 품질개선)

  • Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.318-322
    • /
    • 1997
  • As an investigation for utilization of squid viscera oil as a food source, we attempted to improve a quality of fish burger by addition of emulsion curd formed from gelatin, water and refined squid viscera oil. Judging from the results of peroxide value, brown pigment formation, color value of Hunter, jelly strength and sensory evaluation, the reasonable amount of emulsion curd for the improvement of a fish burger functionality was determined as 6% on the weight basis of the chopped mackerel meat. Total plate counts, volatile basic nitrogen and histamine contents in fish burger prepared by addition of 6% of emulsion curd were $6.2{\times}10^4\;CFU/g$, 19.0 mg/100 g, and 50.7 mg/100 g, respectively. It may be concluded, from the above results that the emulsion curd-added fish burger is a safe as a food commodity. The ratio of polyenes to saturates of emulsion curd-added mackerel burger was 1.13. By adding emulsion curd formed from gelatin, water and refined squid viscera oil, color in cross section, texture and lipid functionality of mackerel burger could be improved in part.

  • PDF

Refining of Squid Viscera Oil (오징어 내장유의 정제)

  • Ha, Jin-Hwan;Lee, Eung-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.294-300
    • /
    • 1997
  • As a part of basic investigation for utilizing by-products derived from marine food processing more effectively as a food source, refining of viscera oil of squid caught off Newzealand were investigated. In the process of refining, degumming with 3% of phosphoric acid at $60^{\circ}C$ for 30 min was effective in removing phosphatides, and optimal condition to neutralize was treating with 0.6% excess of 20% sodium hydroxide solution at $80^{\circ}C$ for 20 min. Bleaching was optimized by adding 10% activated clay and treating for $100^{\circ}C$ for 20 min under vacuum, and deodorizing was done by steam destillation at $180^{\circ}C$ for 60 min under 4 torr of vacuum. Acid value, peroxide value and chromaticity of refined squid viscera oil were 0.20, 0.8 meq/kg and 0.019, respectively. The ratio of polyenoic acid composition to saturated acid composition of refined squid viscera oil was 1.28 and its major fatty acids were 16 : 0, 18 : In-9, 20 : 5n-3 and 22 : 6n-3.

  • PDF

Recovery of High Unsaturated Fatty Acid from Squid Processing Wastes using Supercritical Carbon Dioxide Extraction Method (초임계 이산화탄소 추출법을 이용한 오징어 가공 부산물로부터 고도불포화 지방산 회수)

  • KANG Seong-Sil;KIM Byung-Jun;CHUN Byung-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.217-222
    • /
    • 1999
  • A squid viscera oil contains a high content of EPA, DHA, and other valuable polyunsaturated fatty acids. The extractions of squid viscera oil by supercritical carbon dioxide both with/without $3\%$ (v/v) ethanol were performed in a semicontinuous flow extractor at 8.3 to 13.8 MPa and 25 to $50^{\circ}C$. When ethanol was added to $SC-CO_2$, the extraction ratio of lipid increased. The extracts contained high content of unsaturated oils like DHA and EPA. The highest extraction yield of lipid from squid viscera oil extracted by supercritical carbon dioxide was obtained at 12.4 MPa and $40^{\circ}C$ with/without entrainer. The main fatty acids of squid viscera oil extracted by supercritical carbon dioxide were myristric acid (14:0), palmitic acid (16:0), palmitoleic acid (16:1), oleic acid (18:1), arachidic acid (20:0), eicosapentaenoic acid (20:5), and docosahaxaenoic acid (22:6).

  • PDF

Clinical safety and efficacy of a novel marine source of the long-chain omega-3 fatty acids

  • Park, Joung-Hyun;Musa-Veloso, Kathy;Ji, Ho-Seok
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • Squid is a sustainable source of long-chain omega 3 fatty acids. This study aims to assess the safety and triglyceride-lowering efficacy of refined oil derived from the squid(Todarodes pacificus) viscera. Male and female participants with elevated fasting serum lipids (i.e., total cholesterol of ≥5.2 mmol/L or fasting serum triglyceride of ≥1.65 mmol/L) were randomly allocated to the control (n = 52) or squid oil group (n = 52), and participants in the latter group were instructed to consume 3 g of squid oil daily for 60 days. None of the subjects reported adverse events associated with the consumption of squid oil. Baseline clinical chemistry and hematological parameter values and those toward the end of the treatment period were similar, and all values were within the normal range. Fasting cholesterol and triglyceride levels in the control and squid oil groups were similar; however, toward the end of the 60 day study period, these levels significantly reduced in the squid oil group relative to those in the control group (P< 0.01). However, high-density lipoprotein-cholesterol remained unchanged in both groups. Thus, it can be inferred that squid oil is a safe source of long-chain omega-3 fatty acids and has beneficial effects on the blood lipid levels. This is the first clinical study on squid oil usage, and suggests that it could be a sustainable source of omega 3 fatty acids.

Screening of by-products derived from marine food processing for extraction of DHA-contained lipid (DHA 함유 지질 추출소재로서 수산부산물의 검색)

  • Kim, Jeong-Gyun;Lee, Eung-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.215-219
    • /
    • 1997
  • As a part of basic investigation for utilizing by-products derived from marine food processing more effectively as a food source, lipid contents, fatty acid compositions and lipid compositions in viscera and head of conger eel and hair tail, viscera of mackerel pike, and squids caught off Newzealand and off Falkland island were determined. The lipid contents in marine by-products showed $40.5{\sim}48.0%$ on a dry weight basis and it consisted of $92.1{\sim}99.0%$ neutral lipid and $1.0{\sim}7.9%$ polar lipid such as phospholipid and glycolipid. The neutral lipids mainly consisted of triglyceride$(50.0{\sim}69.9%)$ and had free fatty acid, free sterol, esterified sterol and hydrocarbon, diglyceride, and monoglyceride in less quantity. Squid viscera oil showed higher content in polyenes such as 20:5 and 22:6 than by-product oil derived from fish processing. Viscera oil of squid caught off Newzealand(21.1%) was the highest on DHA composition, followed by that of squid caught off Falkland island(16.3%), hair tail by-product oil(13.9%), conger eel by-product oil(11.7%) and mackerel pike by-product oil(10.7%), in the order named. The major fatty acids in total lipid and neutral lipid of byproducts were generally 16:0, 18: 1n-9, 20:5n-3 and 22:6n-3.

  • PDF

Effects of Phospholipid Extract from Squid Viscera on Lipid Oxidation of Fish Oil

  • Hong, Jeong-Hwa;Jeong, Yong-Sil;Kim, In-Soo;Byun, Dae-Seok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.378-383
    • /
    • 1995
  • Phospholipid(PL), phosphatidylcholine(PC) and phosphatidylcholine free PL(PCF) were extracted from squid viscera and the antioxidant effects of each fraction on the oxidation of refined fish oil were evaluated. Polyunsaturated fatty acid contents were the highest in PC(46.7%) followed by PL(44.8%) and PCF(40.9%). The effects of each phospholipid fraction on stabilizing fish oil were compared by incubating at 40$^{\circ}C$ for 10 days. At the initial period(2 days), changes in peroxide value did not show any significant difference ; however, as incubation time was extended, PC fraction showed the strongest antioxidant activity. PL and PCF added to fish oils also resulted in increased stability against oxidation. Antioxidative effect of PC at the 5% level was equivalent to 0.05% BHT, 1% catechin and 1% tocopherol.

  • PDF