• Title/Summary/Keyword: squeezing method

Search Result 38, Processing Time 0.022 seconds

Quality of Chest Pain According to Causal Diseases and Description of Chest Pain in Patients with Coronary Artery Diseases in Emergency Departments (응급실을 내원한 흉통 환자의 원인질환에 따른 흉통의 질 및 관상동맥질환자의 흉통 표현)

  • Cheon, Sun Hee;Choe, Myoung Ae
    • Journal of Korean Clinical Nursing Research
    • /
    • v.14 no.3
    • /
    • pp.61-72
    • /
    • 2008
  • Purpose: The purpose was to identify quality of chest pain according to causal diseases and pain expression of patients with coronary artery diseases. Method: Participants were 1,964 patients with pain who visited the emergency department of A hospital from January to December 2006. Data were collected from nurses' and doctors' records as to causal disease, and quality and expression of chest pain. Results: Causal diseases were coronary artery diseases, non-specific chest pain, respiratory diseases, non-coronary artery heart diseases and digestive diseases in that order of frequency. Every disease except respiratory disease caused mostly dull and tract pain, but 63.7% of patients with coronary artery diseases complained of typical angina pain and 24.9% complained of atypical angina pain. Patients with coronary artery diseases mostly used word 'heaviness' in describing their dull pain, and 'squeezing' for tract pain. Both male and female patients who were diagnosed with coronary artery disease complained mostly frequently of dull pain and tract pain. Conclusion: The most common causal disease for patients with chest pain was coronary artery disease. Patients with other diseases also frequently complained of dull and tract pain, the same as patients with coronary artery diseases. A considerable number of patients complained various types of atypical angina pain in coronary artery diseases.

  • PDF

Novel Apparatus for Seawater Desalination and Its Application (신개념 해수담수 플랜트 적용을 위한 장치개발 및 적용기술)

  • Lee, Ju Dong;Kang, Kyung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.407-412
    • /
    • 2014
  • A new apparatus for seawater desalination, based on the principle of gas hydrates, is suggested. The equipment continuously produces and pelletizes gas hydrates by a squeezing operation in a dual cylinder unit, which is able to extract pure hydrate pellets from the seawater-containing reactor. Desalination efficiency for each dissolved ion from seawater samples was tested by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and ion chromatography (IC) analysis. This study demonstrates that the suggested method and the stated apparatus may solve the difficulty of separating hydrate crystals from concentrated brine solutions, and therefore may be applied to improve the efficiency of existing desalination processes.

The Study on the Microstructures in Direct Squeeze cast and Gravity Cast of 7XXX Al Wrought Alloy (중력주조 및 직접가압주조 7XXX계 Al합금의 미세조직에 관한 연구)

  • Kim, Sug-Won;Kim, Dae-Young;Woo, Ki-Do;Kim, Dong-Kun
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • Squeeze casting process has been used in the field of a commercial manufacturing method, in which metal is enforcedly solidified under pressure enough to prevent the cast defects such as either gas porosity or shrinkage defect. In this paper, to clarify the relationship between applied pressures and macro ${\cdot}$ microstructural behaviors in gravity and direct squeeze casts, specimens were cast by various squeezing pressures during solidification of 7000 series Al wrought alloy in the metal die designed specially. The applied pressures used in this study were 0, 25, 50, and 75 MPa. The microstructural morphologies of squeeze cast were more fine and dense with increasing the applied pressures, because of the greater solidification rate of billet resulting from the applied pressure. A normal segregation phenomenon of an increasing in amount of eutectics towards the center of the billet was observed for squeeze casts, whereas gravity cast showed an inverse segregation phenomenon of an increasing in amount of eutectics towards the edge in the billet. This change in segregation pattern which is normal or inverse is due to a higher radial temperature gradient and reduced time in the semi solid state for squeeze casting.

  • PDF

Analysis of Microorganisms and Water Transport Properties of the Cotton Fabrics through Dehydration and Drying Process during Washing (세탁의 탈수와 건조과정 중 면직물의 수분전달특성 및 미생물 분석)

  • 최해운;박명자;차옥선
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.5
    • /
    • pp.578-589
    • /
    • 2002
  • The purpose of this research was to analyze the residual water retention and to determine the number and species of microorganisms from the wet cotton fabrics in dehydration and drying process during washing. The drying rates of terrycloth and interlock knit under the rainy seasons were measured according to the dehydration and hanging methods, layers of fabric and pre-treatment agents. Microorganisms were isolated from the dried terrycloth by pure culture, and were identified by Biolog system. The results are as follow: The initial water retention of fabrics after dehydration decreased in the order of dripping>centrifuge>squeezing method, which affected the drying rate. The drying rates were faster by increasing surface area of fabrics. There was no significant difference in drying rate among the fabrics pre-treated with detergent, or fabric softener, or cationic surfactants such as Cetyltrimethylammonium bromide(CTAB) and Benzalkonium chloride(BC). Puedomonas aureginosa was found in the fabrics treated with a powder-type detergent. On the other side, there was no growth of microorganism in the fabrics treated with a liquid-type detergent (containing antibacterial agent), CTAB and BC.

  • PDF

Parametric Optimization and Performance Analysis of Outer Rotor Permanent Magnet Flux Switching Machine for Downhole Application

  • Kumar, Rajesh;Sulaiman, Erwan;Jenal, Mahyuzie;Bahrim, Fatiah Shafiqah
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • To empower safe, economical and eco-friendly sustainable solution for enhancing oil and gas productivity from deep water reservoirs, new downhole technologies are recommended. Since electric machine plays leading role in the downhole application, it is a squeezing requirement for researchers to design and develop advanced electric machine. The Recent improvement in technology and uses of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has become one of the appropriate contenders for offshore drilling but fewer designed for downhole due to ambient temperature. Therefore this comprehensive study deals with the design optimization and performance analysis of outer rotor PMFSM for the downhole application. Preliminary, the basic design parameters needed for machine design are calculated mathematically. Then the design refinement technique is implemented through deterministic method. Finally, initial and optimized performance of the machine is compared and as a result the output torque is increase from 16.39 Nm to 33.57 Nm while diminishing the cogging torque and PM weight up to 1.77 Nm and 0.79 kg, respectively. Therefore, it is concluded that purposed optimized design is suitable for the downhole application.

Penetration Behavior of Jack-up Leg with Spudcan for Offshore Wind Turbine to Multi-layered Soils Using Centrifuge Tests

  • Min Jy Lee;Yun Wook Choo
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.30-42
    • /
    • 2024
  • This study examined the jack-up spudcan penetration for a new type of offshore wind substructure newly proposed using the jack-up concept to reduce construction costs. The jack-up spudcan for offshore wind turbines should be designed to penetrate a stable soil layer capable of supporting operational loads. This study evaluated multi-layered soil conditions using centrifuge tests: loose sand over clay and loose sand-clay-dense sand. The penetration resistance profiles of spudcan recorded at the centrifuge tests were compared with the ISO and InSafeJIP methods. In the tests, a spudcan punch-through effect slightly emerged under the sand-over-clay condition, and a spudcan squeezing effect occurred in the clay-over-sand layer. On the other hand, these two effects were not critically predicted using the ISO method, and the InSafeJIP result predicted only punch-through failure. Nevertheless, ISO and InSafeJIP methods were well-matched under the conditions of the clay layer beneath the sand and the penetration resistance profiles at the clay layer of centrifuge tests. Therefore, the ISO and InSafeJIP methods well predict the punch-through effect at the clay layer but have limitations for penetration resistance predictions at shallow depths and strong stratum soil below a weak layer.

High Deformable Concrete (HDC) element: An experimental and numerical study

  • Kesejini, Yasser Alilou;Bahramifar, Amir;Afshin, Hassan;Tabrizi, Mehrdad Emami
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.357-365
    • /
    • 2021
  • High deformable concrete (HDC) elements have compressive strength rates equal to conventional concrete and have got a high compressive strain at about 20% to 50%. These types of concrete elements as prefabricated parts have an abundance of applications in the construction industry which is the most used in the construction of tunnels in squeezing grounds, tunnel passwords from fault zones or swelling soils as soft supports. HDC elements after reaching to compressive yield stress, in nonlinear behavior have hardening combined with increasing strain and compressive strength. The main aim of this laboratory and numerical research is to construct concrete elements with the above properties so the compressive stress-strain behavior of different concrete elements with four categories of mix designs have been discussed and finally one of them has been defined as HDC element mix design. Furthermore, two columns with and without implementing of HDC elements have been made and stress-strain curves of them have been investigated experimentally. An analysis model is presented for columns using finite element method adopted by ABAQUS. The results obtained from the ABAQUS finite element method are compared with experimental data. The main comparison is made for stress-strain curve. The stress-strain curves from the finite element method agree well with experimental results. The results show that the dimension of the HDC samples is significant in the stress-strain behavior. The use of the element greatly increases energy absorption and ductility.

Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface (굴곡 융착면을 이용한 고밀도폴리에틸렌 관의 버트 융착 공정에서의 열유체 거동 수치모사)

  • Yoo, Jae Hyun;Choi, Sunwoong;Ahn, Kyung Hyun;Oh, Ju Seok
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.561-566
    • /
    • 2017
  • Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

A Study on the Forming Characteristics of Clinching Joint Process (크린칭 접합의 성형특성에 관한 연구)

  • Jayasekara, V.R.;Noh, J.H.;Hwang, B.B.;Ham, K.C.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.603-613
    • /
    • 2007
  • This paper is concerned with joining of thin metal sheets by single stroke clinching process. This method has been used in sheet metal work as it is a simple process and offers the possibility of joining similar-dissimilar thin sheet metals. Clinching generates a joint by overlapping metal sheets deforming plastically by punching and squeezing sequence. AA 5754 aluminum alloy of 0.5 mm thick sheets have been selected as a modal material and the process has been simulated under different process conditions and the results have been analyzed in terms of the quality of clinch joints which are influenced mainly by tool geometries. The rigid-plastic finite element method is applied to analyses in this paper. Analysis is focused mainly on investigation of deformation and material flow patterns influenced by major geometrical parameters such as die diameter, die depth, groove width, and groove corner radius, respectively. To evaluate the quality of clinch joints, four controlling or evaluation parameters have been chosen and they are bottom, neck thickness of bottom and top sheets, and undercut thickness, respectively. It has been concluded from the simulation results that the die geometries such as die depth and diameters are the most decisive process parameters influencing on the quality of clinch joints, and the bottom thickness is the most important evaluation parameter to determine if the quality of clinch joints satisfies the demand for industrial application.

Study on the Design of Deformation Tube for 200kJ Large Energy Absorption (200kJ 대용량 에너지 흡수용 변형튜브 설계에 관한 연구)

  • Kim, Jin Mo;Lee, Jong Kil;Kim, Ki Nam
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • The market share of high-speed railway vehicles is increasing across the world. A high-performance impact energy absorption factor is essential to satisfy the safety standards of railway vehicles. A deformed tube assembly is a typical energy absorption factor in railway vehicles. The tube assembly comprises a deformed tube and a press-fitting punch, its performance depends on the absorption energy characteristics in the plastic zone of the tube. In this study, a deformed tube assembly of a railway vehicle is designed that can absorb a maximum impact energy of 200kJ under plastic deformation. Slab method and finite element analysis are used to estimate the reaction force of the punch in the initial stage, the performance of the designed tube assembly is confirmed experimentally.