• Title/Summary/Keyword: squeeze casting

Search Result 158, Processing Time 0.018 seconds

A Study on Fabrication Conditions of Al-SiCp Composites by Squeeze Casting (Squeeze Casting에 의한 Al-SiCp 복합재료의 제조 조건에 관한 연구)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.471-479
    • /
    • 1994
  • Al-2%Si-2%Mg alloy containing SiC particle in 20, $70{\mu}m$ were prepared by mean of squeeze casting with various pressure 50, 100, 150 and 220MPa respectively. The specimens were made by casting into $50{\Phi}{\times}100{\ell}$ mold under various squeeze conditions(pressures, pressurizing temperature, particle sizes). Mechanical properties(hardness, tensile strength, elongation and wear characteristics) were evaluated at room temperature with those various fabrication factors. It became feasible to make favorable Al-SiCp composite free from casting defects by the injection of Ar gas during melting and 100MPa pressure squeeze casting. However, pressure of 50MPa was not sufficient to avoid completely porosity formation as a result of precessing and shrinkage during solidification. As the particle size is smaller and the squeeze pressure is higher, the hardness and tensile strength at room temperature are higher. Cell size became smaller gradually with increase of squeeze pressure. With increase of squeeze pressure(MPa), wear behaviors of those composites were changed from adhesive into abrasive wear, and the tendency of above behavior became outstanding with increasing sliding speed. The chemical reaction(4Al+3SiC${\rightarrow}$$Al_4C_3+3Si$) is more accelerated at interface between SiCp and matrix with increase of squeeze pressure. Therefore $Al_4C_3$ intercompound and Si peak intensity is increased at interface.

  • PDF

Microstructural Characteristics of SiC Particle Reinforced Aluminum Alloy Composite by Squeeze Casting (Squeeze Casting에 의한 SiC 입자강화 Al합금기 복합재료의 미세조직 특성)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.566-573
    • /
    • 1995
  • In this study, the microstructural characteristics such as primary silicon, eutectic silicon, $SiC_p$ dispersion behavior, compound amount and Si solubility in $Al/SiC_p$ composite fabricated by the squeeze casting under various conditions were investigated systematically. As applied pressure(MPa) increases, cooling rate and compound amount are increased. In gravity casting, the cooling rate of hypereutectic composite is slower than of hypoeutectic composite by exothermic reaction of primary Si crystallization. But the cooling rate of hypereutectic composite is faster than that of hypoeutectic composite fabricated by same applied pressure, because amount of primary Si crystallization in hypereutectic composite was decreased, on the contrary, primary ${\alpha}-Al$ in hypoeutetic composite was increased due to increase of Si solubility in matrix by applied pressure. The crystalized primary silicon in hypereutectic composite fabricated by squeeze casting become more fine than that in non-pressure casting This is because mush zone became narrow due to increase of Si content of eutectic composition by pressure and time for growth of primary silicon got shorter according to applied pressure. It is turned out that eutectic temperature and liquidus are decreased by the increasing of squeeze pressure in all the composite due to thermal unstability of matrix owing to increasing of Si solubility in matrix by the increasing of applied pressure, as indicated in thermal anaiysis(DSC) results.

  • PDF

Optimization of Casting Design for Automobile Transmission Gear Housing by 3D Filling and Solidification Simulation in Local Squeeze Diecasting Process (국부가압 다이캐스팅 공정에서 3차원 유동 및 응고해석을 통한 자동차 변속기 Gear Housing의 주조방안 설계 최적화)

  • Park, Jin-Young;Kim, Eok-Soo;Park, Yong-Ho;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.668-675
    • /
    • 2006
  • In the partial squeeze casting process, the filling behavior of liquid metal and solidification pattern in thick area have significant influence on the quality of casting products and die life. For the optimal casting design of automobile transmission gear housing, various analyses were performed in this study by using computer simulation code, MAGMAsoft and the simulation results were compared and analyzed with experimental results. By air pressure criteria, internal porosities caused by air entrap during the mold filling were predicted and reduced remarkably by modification of gating system. Also, optimal squeeze-time lag to apply partial squeeze pin in thick area was calculated and the castings was free from shrinkage defects with the result of solidification analysis. Consequently, casting design for automobile transmission gear housing was optimized and approved by Computer Tomography.

Numerical Analysis of Infiltration and Heat Transfer of Squeeze Casting for MMCs (용탕주조법을 이용한 금속복합재료의 침투와 열전달 해석)

  • 안인혁;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.195-198
    • /
    • 2000
  • The process of squeeze casting for metal matrix composites (MMCs) has been simulated numerically by using finite difference method. The governing equations to describe fluid flow through porous medium and heat transfer are applied to two dimensional model which is similar to a real system. A computational code has been developed to solve this problem. The influence on infiltration kinetics and solidification time of several parameters is investigated. Cooling curves and temperature distribution with time and position is also shown. The result can be used to design the squeeze casting for MMCs.

  • PDF

Numerical Simulation of Infiltration and Solidification for Squeeze Casting of MMCs (가압주조법을 이용한 금속복합재료 제조공정의 침투와 열전달 해석)

  • Jung C.K.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.250-253
    • /
    • 2004
  • A finite element model is developed for the process of squeeze casting of metal matrix composites. The fluid flow and the heat transfer are fundamental phenomena in squeeze casting. The equations for the clear fluid flow and the flow in porous media are used to simulate the transient metal flow. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy. A direct iteration technique is used to solve the resulting nonlinear algebraic equations. The cooling curves and temperature distribution during infiltration and solidification were calculated for a simplified model with pure aluminum. The developed program can be used for squeeze casting process of complex geometry, boundary conditions and processing parameter optimization.

  • PDF

A Study on Infiltration Limits in Forming Process of Metal Matrix Composites by Squeeze Casting (용탕단조법에 의한 금속복합재료의 성형공정에 있어서 함침한계성에 관한 연구)

  • Kang, C.C.;Ku, G.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1751-1760
    • /
    • 1993
  • The squeeze casting process is considered as an attractive way to form the primary product of near net shape metal matrix composites for wide use in automobile industry. To understand for infiltration limit in squeeze casting processes, the SAFFIL short fiber preform of volume fraction $10%{\sim}23%$ were fabricated by vaccum pumping and speed control press, and the optimal condition for fiber preform fabrication had been experimentally obtained. The composite materials were fabricated by forced infiltration of molten metals such as Al6061, Al7075, pure Al, AC8A, and Al2024. The infiltration distance and deformation of fiber preform are observed, and tensile strength were measured from at the room temperature.

Characterization of the Ni and Ni-Cr Porous Metal Reinforced AC4C Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 Ni, Ni-Cr 다공질 발포금속 강화 AC4C 합금기 복합재료에 관한 연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 2005
  • The microstructure and mechanical property of the Ni and Ni-Cr porous metal reinforced AC4C matrix composites fabricated by squeeze casting were investigated. In this study Ni, Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition shows that atsolutionizing temperature of above $520^{\circ}C$, the interfacial reaction zone increases proportionally with heat treatment time and the reaction products formed by interfacial reactions are mainly composed by $Al_{3}Ni$ and $Al_{3}Ni_{2}$ phases.

A Characteristics of Al Matrix Composites Prepared by Rheo-compocasting and Squeeze Casting (Rheo-compocasting과 Squeeze casting법에 의해 제조된 AI기 복합재료의특성)

  • Seo, Yeong-Sik
    • Korean Journal of Materials Research
    • /
    • v.6 no.12
    • /
    • pp.1199-1212
    • /
    • 1996
  • 본 연구는 주조성, 내압성, 내열성 등이 우수하여 군용 및 민수용 기계소재로 이용되고 있는 AI-Si-Mg계 AC4C 합금에 세라믹(AI2O3, AI2O3-TiC)을 강화시키는 복합재료제조에 관한 기초연구의 일환으로 수행하였다. 연구내용은 세라믹 강화재의 젖음성을 높이기 위하여 수소환원법에 의한 AI2O3입자의 Ni 피복과 기존의 프리폰 제조방법보다 간단하고 경제적인 자전연소합성법에 의해 AI2O3-TiC 다공성 pellet을 제조하여, 이들 강화재와 AC4C 기지금속을 이용하여 고대-compocasting 및 squeeze casting법으로 복합재료를 제조하고 미세조직, 계면생성물, 기계적 성질, 내마멸성 등의 특성을 조사하였다. 고대-compocasting법에 의해 제조된 AI2O3Ni 입자 강화 복합재료에서 강화재들은 응집체로 존재하지 않고 비교적 균일하게 분산되었고 AI2O3-TiC 강화재를 이용하여 squeeze casting으로 가압주조 하므로써 기지금속과 강화재의 젖음성이 향상되었다.

  • PDF

A Study on the Microstructures and Mechanical Properties of Squeeze Cast High Strength Yellow Brass, Al Bronze and Sn Bronze Alloys (고강도 황동, 알루미늄 청동 및 인청동합금의 용탕단조 조직과 기계적 성질에 관한 연구)

  • Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.484-492
    • /
    • 1999
  • The microstructures and mechanical properties of high strength yellow brass, Al bronze and Sn bronze alloys fabricated by gravity die casting and squeeze casting were investigated. A rapid cooling of casting was enhanced by pressure applied during solidification of Cu alloys, the cooling rate of casting was more great for high strength yellow brass alloy than other Cu alloys. Grain size and phases of the squeeze cast products become refined to 1/2 level compared to gravity die castings. Squeeze cast Al bronze and high strength yellow brass has about 10-20% higher yield and tensile strength and slighter decreased or nearly same elongation, compared to gravity die cast ones. Sn bronze has nearly same strength and hardness, but shows increased in elongation, compared to gravity die cast ones.

  • PDF

Effects of Si Content and Melt Treatment on the Fluidity of Al-Si Alloy during Squeeze Casting (알루미늄 - 규소 합금의 용탕단조시 유동도에 미치는 규소 함량 및 용탕 처리의 영향)

  • Lee, Hag-Ju;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.26 no.6
    • /
    • pp.241-248
    • /
    • 2006
  • The effects of silicon content and melt treatment on the fluidity of Al-Si alloys during squeeze casting were investigated. The fluidity of Al-3.0 wt%Si alloy was found to be lower than that of Al-1.0 wt%Si and the fluidity of the alloy with more than 3.0 wt%Si increased with the silicon content upto 13.0 wt% and rather decreased with15.0 wt%. The fluidity was also increased by the separated treatment of grain refinement or eutectic modification, and even more by the simultaneous treatment of both. The fluidity of hypereutectic alloy was increased by the refinement of primary silicon particle.