• Title/Summary/Keyword: squared residual

Search Result 52, Processing Time 0.014 seconds

Skill Assessments for Evaluating the Performance of the Hydrodynamic Model (해수유동모델 검증을 위한 오차평가방법 비교 연구)

  • Kim, Tae-Yun;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • To evaluate the performance of the hydrodynamic model, we introduced 10 skill assessments that are assorted by two groups: quantitative skill assessments (Absolute Average Error or AAE, Root Mean Squared Error or RMSE, Relative Absolute Average Error or RAAE, Percentage Model Error or PME) and qualitative skill assessments (Correlation Coefficient or CC, Reliability Index or RI, Index of Agreement or IA, Modeling Efficiency or MEF, Cost Function or CF, Coefficient of Residual Mass or CRM). These skill assessments were applied and calculated to evaluate the hydrodynamic modeling at one of Florida estuaries for water level, current, and salinity as comparing measured and simulated values. We found that AAE, RMSE, RAAE, CC, IA, MEF, CF, and CRM are suitable for the error assessment of water level and current, and AAE, RMSE, RAAE, PME, CC, RI, IA, CF, and CRM are good at the salinity error assessment. Quantitative and qualitative skill assessments showed the similar trend in terms of the classification for good and bad performance of model. Furthermore, this paper suggested the criteria of the "good" model performance for water level, current, and salinity. The criteria are RAAE < 10%, CC > 0.95, IA > 0.98, MEF > 0.93, CF < 0.21 for water level, RAAE < 20%, CC > 0.7, IA > 0.8, MEF > 0.5, CF < 0.5 for current, and RAAE < 10%, PME < 10%, CC > 0.9, RI < 1.15, CF < 0.1 for salinity.

A study on the factors to affect the career success among workers with disabilities (지체장애근로자의 직업성공 요인에 관한 연구)

  • Lee, Dal-Yob
    • 한국사회복지학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.185-216
    • /
    • 2003
  • This study was aimed at investigating important factors influencing career success among regular workers. The current researcher scrutinized the degree to which variables and factors affect the career success and occupational turnover rates of the research participants. At the same tune, two hypothetical path models established by the researcher were examined using linear multiple regression methods and the LISREL. After examining the differences among the factors of career success, a comparison was made between the disabled worker group and the non-disabled worker group. A questionnaire using the 5-point Likert scale was distributed to a group of 374 workers with disabilities and 463 workers without disabilities. For the data analysis purpose, the structural equation model, factor analysis, correlation analysis, and multiple regression analysis were carried out. The results of this study ran be summarized as follows. First, the results of factor analysis showed important categories of conceptual themes of career success. The initial conceptual factor model did not accord with the empirical one. A three-factorial model revealed categories of personal, family, and organizational factor respectively. The personal factor was composed of the self-esteem and self-efficiency. The family factor was consisted of the multi-roles stress and the number of children. Finally, the organizational factor was composed of the capacity for utilizing resources, networking, and the frequency of mentoring. In addition, the total 10 sub areas of career success were divided by two important aspects; the subjective career success and the objective career success. Second, both research participant groups seemed to be influenced by their occupational types. However, all predictive variables excluding the wage rate and the average length of work years had significant impact on job success for the disabled work group, while all the variables excluding the frequency of advice and length of working years had significant impact on job success for the non-disabled worker group. Third, the turnover rate was significantly influenced by the age and the experience of turnover of the research participants. However, the number of co-workers was the strongest predictive variable for the worker group with disabilities, but the occupation choice variable for the worker group without disabilities. For the disabled worker group, the turnover rate was differently influenced by the type of occupation, the length of working years, while multi-role stress and the average working years at the time of turnover for the worker group without disabilities. Fifth, as a result of verifying the hypothetical path model, it showed that the first model was somewhat proper and could predict the career success on both research participant groups. In the second model, the Chi-square, the degree of freedom (($x^2=64.950$, df=61, P=0.341), and the adjusted Goodness of Fit Index (AGFI) were .964, and the Comparative Fit Index (CFI) were .997, and the Root Mean Squared Residual (RMR) was respectively. .038. The model was best fitted and could predict the career success more highly because the goodness of fit index in the whole models was within the allowed range. In conclusion, the following research implications can be suggested. First, the occupational type of research participants was one of the most important variables to predict the career success for both research participant groups. It means that people with disabilities require human development services including education. They need to improve themselves in this knowledge-based society. Furthermore, for maintaining the career success, people with disabilities should be approached by considering the subjective career success aspects including wages and the promotion opportunities than the objective career success aspects.

  • PDF