• 제목/요약/키워드: square root time

검색결과 697건 처리시간 0.026초

머신러닝기반 범죄발생 위험지역 예측 (Predicting Crime Risky Area Using Machine Learning)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.64-80
    • /
    • 2018
  • 우리나라의 시민들은 범죄에 대한 일반적인 사항만을 알 수 있을 뿐, 자신이 범죄위험에 얼마나 노출되어 있는지를 파악하기 어렵다. 경찰의 입장에서도 범죄발생 지역을 예측할 수 있다면 경찰력이 부족한 상황에서 효율성 있게 범죄에 대처 가능할 것이지만 아직 우리나라에서는 예측시스템이 없고, 관련 연구도 매우 부족한 실정이다. 이에 본 연구에서는 범죄발생 위험지역 예측 자동화 시스템 개발의 첫 번째 단계로 빅데이터로 구축 가능한 범죄정보와 도시지역 자료를 바탕으로 머신러닝 방식을 통해 한국형 범죄발생 위험지역 예측 모형을 개발하고자 한다. 또한 시나리오를 가정하여 범죄발생 확률을 지도로 시각화함으로써 사용자의 이해도를 높이도록 하였다. 선행 연구 및 사례에서 범죄발생에 영향을 미치는 요인 중 빅데이터로 구축 가능한 범죄정보, 날씨정보(기온, 강수량, 풍속, 습도, 일조, 일사, 적설, 전운량), 지역정보(평균 건폐율, 평균 용적율, 평균 높이, 총 건축물수, 평균 공시지가, 평균 주거용도면적, 평균 지상층수)를 머신러닝에 활용할 수 있도록 데이터를 사전 처리하였다. 머신러닝 알고리즘으로서 지도학습 모형 중 다양한 분야에서 활용되며 정확도가 높다고 알려진 의사결정나무모형, 랜덤포레스트모형, Support Vector Machine(SVM)모형을 활용하여 범죄 예측 모형을 구축하고 비교 분석하였다. 그 결과 평균 제곱근 오차(Root Mean Square Error, RMSE)가 낮아 예측력이 높은 의사결정나무모형을 최적모형으로 선정하였다. 이를 바탕으로 가장 빈번하게 발생하는 절도와 폭력범죄를 대상으로 시나리오를 작성하여 범죄 발생 위험지역을 예측한 결과, 사례도시 J시는 위험지역이 3가지 패턴으로 발생하는 것으로 나타났으며, 각각 발생확률을 3 등급으로 구분하여 $250{\times}250m$ 단위의 지도형태로 시각화할 수 있었다. 본 연구는 향후 자동화 시스템으로 개발하여 시시각각으로 변하는 도시 상황에 따라 실시간으로 예측 결과를 시각화하여 제공함으로써 보다 범죄로부터 안전한 도시환경 조성에 기여하고자 한다.

HadGEM3-RA 지역기후모델을 이용한 CORDEX 동아시아 2단계 지역의 기온과 강수 모의 평가 (Evaluation of Temperature and Precipitation over CORDEX-EA Phase 2 Domain using Regional Climate Model HadGEM3-RA)

  • 변재영;김태준;김진욱;김도현
    • 한국지구과학회지
    • /
    • 제43권3호
    • /
    • pp.367-385
    • /
    • 2022
  • 본 연구는 영국기상청에서 개발된 지역기후모델 Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA)로부터 모의된 동아시아 지역의 기온과 강수 결과를 평가하였다. HadGEM3-RA는 Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II 영역에서 15년 (2000-2014년) 모의되었다. 동아시아 여름 몬순에 의한 HadGEM3-RA 강수대 분포는 Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) 자료와 잘 일치한다. 그러나, 동남아시아 강수는 과대 모의하며 남한에서는 과소 모의한다. 특히 모의된 여름철 강수량과 APHRODITE 강수량은 남한지역에서 가장 낮은 상관 계수와 가장 큰 오차크기(RMSE)를 보인다. 동아시아 기온 예측은 과소 모의하며 겨울철 오차가 가장 크다. 남한 기온 예측은 봄 동안 가장 큰 과소 모의 오차를 나타냈다. 국지적 예측성을 평가하기 위하여 서울기상관측소 ASOS 자료와 비교한 기온과 강수의 시계열은 여름철 강수와 겨울철 기온이 과소 모의하는 공간 평균된 검증 결과와 유사하였다. 특히 여름철 강수량 증가시 과소 모의 오차가 증가하였다. 겨울철 기온은 저온에서는 과소 모의하나 고온은 과대 모의하는 경향이 나타났다. 극한기후지수 비교 결과는 폭염은 과대 모의하여, 집중호우는 과소 모의하는 오차가 나타났다. 수평해상도25km로 모의된 HadGEM3-RA는 중규모 대류계와 지형성 강수 예측에서 한계를 보였다. 본 연구는 지역기후모델 예측성 개선을 위한 초기 자료 개선, 해상도 향상, 물리 과정의 개선이 필요함을 지시한다.

천리안 2A호와 히마와리 8호 기반 일사량 추정값과 종관기상관측망 일사량 관측값 간의 비교 (Comparison between Solar Radiation Estimates Based on GK-2A and Himawari 8 Satellite and Observed Solar Radiation at Synoptic Weather Stations)

  • 강대균;조영상;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제25권1호
    • /
    • pp.28-36
    • /
    • 2023
  • 일사량은 작물 생산성 평가를 위한 작물 생육 모델의 주요 입력 변수 중 하나로 사용되지만 관측이 어려워 다른 기상 변수들에 비해 관측값의 확보가 어렵다. 천리안 2A호와 히마와리 8호 위성 일사량 자료가 제공되기 시작하면서, 작물 생육과 태양광 발전을 결합한 영농형 태양광 시설 하에서의 작물 생산성 평가를 위한 일사량 자료를 확보하기 용이해졌다. 본 연구의 목적은 이들 인공위성 일사량 자료의 신뢰도를 비교하는 것이다. 이를 위해 2020년 5월부터 10월까지 인공위성 일사량 자료를 수집하여 일별 일사량의 평균 제곱근 편차(RMSE)와 정규 평균 제곱근 편차(NRMSE)를 계산하였다. 인공위성 일사량 자료가 작물 생육 모의 결과의 신뢰도에 미치는 영향을 파악하기 위해 연구기간 동안의 일사량 누적값을 비교하였다. 본 연구의 결과 히마와리 8호 일사량 자료가 천리안 2A호 일사량 자료보다 RMSE와 NRMSE가 작은 것으로 나타났다. 누적 일사량을 비교한 결과에서도 히마와리 8호 일사량 자료 누적값이 천리안 2A호 일사량 자료 누적값보다 오차가 작았다. 본 연구의 결과는 작물 생산성 평가에 히마와리 8호 일사량 자료를 사용하는 것이 천리안 2A호 일사량 자료를 사용하는 것보다 불확도를 줄일 수 있다는 것을 시사한다. 후속 연구에서 히마와리 8호 일사량 자료를 사용한 영농형 태양광 시설 하에서의 작물 생산성 및 태양광 발전량에 대한 분석이 이루어져야 할 것이다.

산림지역에서의 2023년 봄철 꽃나무 개화시기 예측 (Prediction of Spring Flowering Timing in Forested Area in 2023)

  • 서지희;김수경;김현석;천정화;원명수;장근창
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.427-435
    • /
    • 2023
  • 이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.

드러밍 운동이 과체중 여성의 자율신경계에 미치는 영향 (Effects of drumming exercise on the autonomic nervous system in overweight women)

  • 권정인;이재훈;조준용;오유성
    • 한국응용과학기술학회지
    • /
    • 제41권2호
    • /
    • pp.219-232
    • /
    • 2024
  • 이 연구는 성인 여성을 대상으로 체질량지수와 드러밍 운동이 자율신경계에 미치는 영향을 규명하는데 목적이 있다. 30-50대의 성인 여성10명을 체질량지수가 정상인 집단(Low BMI, LBMI <23kg/m2)과 과체중 이상인 집단(High BMI, HBMI>23kg/m2)으로 나누어 드러밍 운동을 실시하였다. 드러밍 운동은 1회 50분, 주 3회, 8주간 실시하였으며, 운동 전후 신체조성과 심박변이도를 측정하였다. 심박변이도는 선형분석인 시간 영역 분석과 주파수 영역 분석을 통해 SDNN(Standard Deviation of NN interval), RMSSD(Root Mean Square of the Successive Differences), HF(High Frequency), LF(Low Frequency), TP(Total Power)를 측정하였다. 비선형분석인 푸앵카레 플롯(Poincaré plot)을 통해 SD1(Standard Deviation of the distance of each point from the y = x axis), SD2(Standard Deviation of each point from the y = x + average R-R interval), SD2/SD1을 측정하였다. 자율신경계 지수로 부교감신경계지수(Parasympathetic Nervous System Index; PNS Index)와 교감신경계지수(Sympathetic Nervous System; SNS Index)를 측정하였다. 연구 결과, 운동 전 심박변이도에서 HBMI 집단과 LBMI 집단 간에는 유의한 차이가 나타나지 않았다. 그러나, 8주간의 드러밍 운동 후에는 HBMI 집단이 LBMI 집단에 비해 체중(p=0.034), 체질량지수(p=0.044), 체지방량(p=0.032), 허리둘레(p=0.013)에서 유의한 상호작용 효과가 나타났다. 심박변이도에서 HBMI 집단은 LBMI 집단에 비해 선형 분석에서 RMSSD(p=0.018)와 TP(p=0.033), 비선형분석에서는 SD1(p=0.018), 자율신경계지수에서는 PNS Index(p=0.040)가 유의하게 증가하였다. RMSSD, SD1 및 PNS Index는 부교감신경계의 활동을 나타내는 지표이다. 결론적으로 8주간의 드러밍 운동이 과체중 이상 여성의 자율신경계 중 부교감신경계의 개선에 긍정적인 효과를 미치는 것으로 확인되었다.

지체장애근로자의 직업성공 요인에 관한 연구 (A study on the factors to affect the career success among workers with disabilities)

  • 이달엽
    • 한국사회복지학회:학술대회논문집
    • /
    • 한국사회복지학회 2003년도 추계학술대회 자료집
    • /
    • pp.185-216
    • /
    • 2003
  • 본 연구에서 지체장애근로자들의 직업성공을 구성하는 요인들을 분석하고 이들 요인이 직업성공과 이직에 영향을 미치는 정도를 조사하여 가설적 이론모형을 검증하려는 목적을 두었다. 이를 위해서 지체장애를 가진 근로자 374명과 일반근로자 453명을 대상으로 구조화된 설문지를 통해 나타난 주요 연구결과들은 다음과 같이 요약되었다. 첫째, 장애근로자와 일반근로자의 직업성공을 구성하는 요인은 개인, 가정, 조직의 측면에서 나타났다. 개인적인 측면은 자아존중감과 자아효능감으로 구성되었고, 가족적인 측면은 다중역할스트레스와 자녀의 수로 구성되었다. 조직적인 측면은 자원활용능력, 네트워킹, 그리고 조언자로 구성되었다 이 밖에도 주관적인 직업성공과 객관적인 직업성공이라는 잠재변수에서 종 10개의 측정변수가 도출되었다. 둘째, 장애근로자와 일반근로자 집단 모두 직종이 직업성공에 영향을 미치는 것으로 조사되었다. 관측변수에서는 두 집단에서 직업성공에 영향을 주는 변수가 서로 다르게 나왔다. 장애근로자집단은 이직을 했을 때 평균적으로 근속한 년수와 임금을 제외하고 나머지 모든 관측변수에서 영향을 미치는 것으로 나타났으며, 일반집단은 조언자와 근속년수를 제외하고 나머지 모든 관측변수에서 영향을 미치는 것으로 조사되었다. 셋째, 장애근로자와 일반근로자 집단 모두 연령과 이직 경험이 이직 (이직횟수)에 영향을 미치는 것으로 나타났다. 그러나 장애집단은 친구의 수, 일반집단은 직업선택 시 중요하게 고려하는 사망이 각각 이직에 강한 영향을 미치는 것으로 조사되어 두 집단의 자이를 보여주었다. 또한 관측변수에서도 장애집단은 배우자의 직업과 근속년수, 일반집단은 다중역할 스트레스와 이직평균 근무년수에서 각기 다르게 이직에 영향을 미치는 것으로 나타났다. 넷째, 가설적 경로모형을 검증한 결과 제 1모형은 어느 정도 타당하고 직업성공을 예측할 수 있는 것으로 나타났으며, 제 2모형은 카이스퀘어와 자유도 ($x^2=64950$, df=61, P=0341), 기초부합치 (AGFI)는 .954, 비적합지수 (CFI)는 997, 그리고 원소간의 평균차이 (RMR)도 .038로써 모형의 적합도 지수는 모두 허용된 범위 안에 있기 때문에 매우 적합한 모형으로 직업 성공을 보다 높게 예측할 수 있는 것으로 조사되었다. 이상의 연구결과를 바탕으로 본 연구에서는 다음과 같이 결론을 도출하였다. 첫째, 직종이 두 집단 모두에서 직업성공을 예측하는데 주요한 변수로 나타나 장애근로자들의 학력을 높이고 계속해서 전문화 육에 많은 노력이 필요할 것이다. 특히, 임금정도와 같은 객관적인 직업성공 보다는 임금과 진급에서의 만족과 같은 주관적인 직업성공에 더욱 더 많은 고려를 기울여야 할 것으로 사료된다. 둘째, 장애근로자의 이직을 줄이기 위해서는 직장 내에서 유용한 인적 자원과 네트웍의 수를 늘여야 할 것이다. 이것은 장애집단이 일반집단보다 대인관계에 대해서 더 많은 시간과 노력을 기울여야 한다는 것을 의미한다.

  • PDF

이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정 (Converting Ieodo Ocean Research Station Wind Speed Observations to Reference Height Data for Real-Time Operational Use)

  • 변도성;김효원;이주영;이은일;박경애;우혜진
    • 한국해양학회지:바다
    • /
    • 제23권4호
    • /
    • pp.153-178
    • /
    • 2018
  • 운용용으로 사용되는 대부분의 풍속자료는 10 m 기준 고도에서 측정 또는 생산된 자료이다. 이 연구는 이어도 해양과학기지 42.3 m 고도의 옥상 등대에서 측정 중인 풍속을 기준 고도의 풍속으로 변환시켜 국립해양조사원 누리집을 통해 실시간으로 제공하기 위한 사전 연구이다. 이를 위해 2015년에 이어도 기지에서 관측한 풍속을 대표적인 네 종류의 풍속 변환식 - 멱법칙식, 두 종류의 중립벽 로그법칙식(항력계수형, 거칠기 높이형), 대기 안정도 효과를 고려한 벽 로그법칙모델(안정도 고려 거칠기 높이형) -에 적용하였다. 관측 바람을 평가하는데 많이 사용되는 '안정도 고려 거칠기 높이형' 벽 로그법칙모델의 결과와 나머지 풍속 변환식 결과들을 서로 비교하였다. 그 결과 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그법칙모델 간 편향과 평균 제곱근 편차는 각각 $-0.001m\;s^{-1}$$0.122m\;s^{-1}$로 가장 낮아 실시간 현업 운용 측면에서 상호 보완적으로 이 두 변환식을 함께 사용하는 것이 바람직하다는 결론을 도출하였다. 또한 이어도 해역에서 조석에 의한 풍속 관측 고도 변화가 풍속 변환에 미치는 영향을 분석하였다. 이들 변환식에 대한 조석 효과 고려 전후에 대한 비교 실험 결과, 편향과 평균 제곱근 편차는 각각 <$0.0001m\;s^{-1}$와 <$0.012m\;s^{-1}$로 그 영향은 미미하였다. 대기 표면 거칠기 높이를 사용하는 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그 법칙모델을 이용하여 간편 풍속 변환식의 필수 입력값인 표면 거칠기 높이 값의 적절성에 관해 논의하였으며, 풍속 변환 정확도를 향상시킬 수 있는 표면 거칠기 높이 계산식을 제시하였다. 또한 인공위성 산란계(ASCAT) 풍속자료와 네 종류의 중립 연직 풍속 변환식들의 결과를 비교하여 이들 중 '안정도 고려 거칠기 높이형' 벽 로그법칙모델에서 안정도 항을 뺀 풍속 변환 모델의 정확도가 더 낫다는 결과를 제시하였다. 끝으로 이들 종래 $25m\;s^{-1}$ 이하 풍속에 최적화된 풍속 변환식들로부터 바람 항력계수를 산정 분석하여 강풍(${\geq}33m\;s^{-1}$) 환경에서도 적합한 풍속 변환식으로 개선 필요성에 관해 논의하였다.